The maximum points available in this exam is 48 . Some useful formulas at the end.

1. (a) Explain what means "collapse of the wave function". [3 pt $]$
(b) Show that the eigenvalues of a self-adjoint operator are real valued. [3 pt]
(c) Find the normalization constant of the ground state wave function of 1 D harmonic oscillator $\psi_{0}(x)=A \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right)$. [3 pt]
(d) Explain what the Heisenberg uncertainty relation means. [3 pt]
yht. 12 pt
2. (a) Let the potential of a 1-dimensional quantum mechanical system be time-independent, that is the Hamiltonian operator is given by

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

Use a separation of variables for the corresponding time-dependent Schrödinger equation to derive the stationary state Schrödinger equation $\hat{H} \psi_{E}(x)=E \psi_{E}(x)$ for this system, and solve the time-dependent part. Write down the general solution to the time-dependent Schrödinger equation in the basis spanned by the solutions of the corresponding stationary state Schrödinger equation. [4 pt]
(b) Start from the definition $\langle A(t)\rangle \equiv\langle\psi(t)| \hat{A}(t)|\psi(t)\rangle$ of the expectation value of an observable and show using Dirac's notation (without going into x-representation) that its time-evolution is governed by

$$
\frac{d\langle A\rangle}{d t}=\left\langle\frac{\partial \hat{A}(t)}{\partial t}\right\rangle+\frac{\imath}{\hbar}\langle[\hat{H}, \hat{A}]\rangle
$$

[4 pt]
(c) Show using the Heisenberg equation of motion derived above that the so-called Ehrenfest theorem, that is

$$
\begin{aligned}
\frac{d\langle x(t)\rangle}{d t} & =\frac{\langle p(t)\rangle}{m} \\
\frac{d\langle p(t)\rangle}{d t} & =-\left\langle\frac{d V(x)}{d x}\right\rangle
\end{aligned}
$$

holds for the Hamiltonian operator of part (a). Notice that the result $[\hat{p}, \hat{V}]=$ $-\left.\imath \hbar \frac{d V(x)}{d x}\right|_{\hat{x}}$ might be helpful. [4 pt]
yht. 12 pt
3. (a) Let us examine the motion of a quantum mechanical particle that is scattered by a delta function potential at the origin $x=0: V(x)=\frac{\hbar^{2}}{m} \Omega \delta(x)$. The wave function of the particle is

$$
\psi(x)=\left\{\begin{array}{l}
A \exp (i k x)+B \exp (-i k x), \quad x<0 \\
C \exp (i k x), \quad x \geq 0
\end{array}\right.
$$

What kind of motion is represented by this wave function? [2 pt]
(b) Write the stationary Schrödinger equation for this problem and show that the discontinuity of the derivative of the wave function at origin is

$$
\psi^{\prime}\left(0_{+}\right)-\psi^{\prime}\left(0_{-}\right)=2 \Omega \psi(0)
$$

[5 pt]
(c) Although the derivative is discontinuous, the wave function itself is continuous everywhere. Use this information and derive the results for the reflectance and transmission coefficients

$$
\begin{aligned}
R & =\frac{|B|^{2}}{|A|^{2}}=\frac{\Omega^{2}}{k^{2}+\Omega^{2}} \\
T & =\frac{|C|^{2}}{|A|^{2}}=\frac{k^{2}}{k^{2}+\Omega^{2}}
\end{aligned}
$$

[5 pt]
yht. 12 pt
4. Let us consider a two-state system with orthonormal states $|1\rangle$ ja $|2\rangle$ and energy eigenvalues E_{1} ja E_{2}, which means

$$
\begin{aligned}
\hat{H}|1\rangle & =E_{1}|1\rangle \\
\hat{H}|2\rangle & =E_{2}|2\rangle
\end{aligned}
$$

Let there be also an observable A with a corresponding operator \hat{A} that acts in the following way:

$$
\begin{aligned}
& \hat{A}|1\rangle=+\imath \hbar|2\rangle \\
& \hat{A}|2\rangle=-\imath \hbar|1\rangle
\end{aligned}
$$

Let the system be initially $(t=0)$ in state

$$
|\psi(0)\rangle=\frac{3}{5}|1\rangle+\frac{4}{5}|2\rangle
$$

Let the system evolve to time $t=t_{1}>0$.
(a) What are the possible eigenvalues for A and energy at time $t=t_{1}$? [4 pt]
(b) What are the probabilities to find the different eigenvalues of A at time $t=t_{1}$? [4 pt]
(c) Is A a constant of motion? Give arguments (calculation) to support your answer. [4 pt]

Some help:

$$
|\psi(t)\rangle=\sum_{N} c_{N} e^{-\imath E_{N}\left(t-t_{0}\right) / \hbar}\left|E_{N}\right\rangle
$$

yht. 12 pt

Here is the list of some useful trigonometric identities

$$
\begin{aligned}
1 & =\cos ^{2}(x)+\sin ^{2}(x), \\
e^{2 x} & =\cos (x)+\imath \sin ^{(x)}, \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x), \\
\sin (x+y) & =\sin (x) \cos (y)+\cos (x) \sin (y), \\
\cos (x+y) & =\cos (x) \cos (y)-\sin (x) \sin (y),
\end{aligned}
$$

integrals

$$
\int_{-\infty}^{\infty} d x \exp \left(-b x^{2}\right)=\sqrt{\pi / b}
$$

and commutation relations

$$
[A B, C]=A[B, C]+[A, C] B
$$

