
FYSA233 Quantum Mechanics I, Part A

final exam: 4 problems, 4 hours

23.11. 2012

1. Consider quantum mechanical two-state system. An observable A has eigenstates |+〉
and |−〉, which satisfy

A|+〉 = |+〉, A|−〉 = −|−〉.

The Hamiltonian of the system on the other hand satisfies equations

H|+〉 = E|+〉+ iδ|−〉, H|−〉 = −iδ|+〉+ E|−〉.

where E ja δ are real numbers.

(a) (2p.) Write the matrix representations of the operators A and H in the basis
given by the states |+〉 and |−〉.

(b) (2p.) Let the system be in the state |+〉. If the energy of the system is now
measured, what are the possible outcomes of the measurements and their pro-
babilities?

(c) (2p.) Denote the energy eigenvalues as ε+ and ε− (ε+ > ε−), and the correspon-
ding eigenstates as |ε+〉 and |ε−〉. If the energy measurement in part (b) resulted
in ε+, what is the state vector of the system immediately after the measurement?
If A is now measured, what are the possible outcomes and their probabilities?

2. Consider a particle in a quantum mechanical symmetric double well, which has two
orthonormal bound states, even and odd (|E〉 and |O〉). Let their eigenenergies be
E1 and E2, i.e.

H|E〉 = E1|E〉,
H|O〉 = E2|O〉.

(a) (1p.) Suppose that at time t = 0 the system is in the state

|Ψ(0)〉 = α|E〉+ β|O〉,

where |α|2 + |β|2 = 1. What is the state vector |Ψ(t)〉 at later times t > 0?

(b) (3p.) When the system is in the state (|E〉+ |O〉)/
√

2, the probability to observe
the particle in the leftmost well is equal to 1. When the state of the system is
(|E〉 − |O〉)/

√
2, the probability to find the system from the rightmost well is

equal to 1. Suppose that the system is intially, at t = 0, prepared so that the
particle is certainly in the leftmost well, i.e. α = β = 1/

√
2. Compute the

probability that at later times, t > 0, the particle is found from the rightmost
well. How long does it take, that the particle is found from the rightmost well
with probability 1?

(c) (2p.) Suppose that the particle was found from the rightmost well at time t.
What is the probability to find the particle in the leftmost well at time 3t, if no
measurements are performed on the system during the time interval from t to
3t?



3. (a) (3p.) Let H be the Hamiltonian of the system and let A represent some obser-
vable. Derive the Ehrenfest theorem

d〈A〉
dt

= − i
h̄
〈[A,H]〉+ 〈∂A

∂t
〉.

(b) (3p.) Consider the potential

V (x) =


0, x < −L/2,
−V0, |x| < L/2,

V0, x > L/2.

The attached figure corresponds to values V0 = 1 eV and L = 0.5 nm. The scat-
tering solutions and bound state solutions satisfy the time independent Schrö-
dinger equation

− h̄2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x).

Write the most general normalizable solution of the Schrödinger equation when
E < 0 (but E > −V0). Which conditions the wave function and its derivative
have to satisfy at x = ±L/2?
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4. The Hamiltonian of the one dimensional harmonic oscillator is

H =
P 2

2m
+

1

2
mω2X2.

Define the raising and lowering operators as

a =

√
mω

2h̄
X +

i√
2h̄mω

P, a† =

√
mω

2h̄
X − i√

2h̄mω
P.

(a) (1p.) Derive the commutation relation [a, a†] = 1.

(b) (2p.) Consider the number operator N = a†a and its eigenstates satisfying
N |n〉 = n|n〉. Show that a lowers and a† raises the eigenvalue by one, i.e.

Na|n〉 = (n− 1)a|n〉, Na†|n〉 = (n+ 1)a†|n〉.

(c) (1p.) Determine the constants C and C ′ so that the states |n− 1〉 = Ca|n〉 and
|n+ 1〉 = C ′a†|n〉 are normalized.

(d) (2p.) Compute the expectation values of the operators X and X2 in the state
|n〉.



Useful formulas:

eix = cosx+ i sinx eiπ + 1 = 0

sinx =
1

2i

(
eix − e−ix

)
cosx =

1

2

(
eix + e−ix

)
sin(2x) = 2 sinx cosx cos(2x) = cos2 x− sin2 x

1

2
(1− cosx) = sin2 x

2

1

2
(1 + cos x) = cos2 x

2

ex =
∞∑
n=0

xn

n!
sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 cosx =

∞∑
n=0

(−1)n

(2n)!
x2n

∫ ∞
−∞

dx e−cx
2

=

√
π

c

∫ ∞
−∞

dx x2e−cx
2

=

√
π

2c
3
2∫ ∞

−∞
dx δ(x− x0)f(x) = f(x0)

∫ ∞
−∞

dx δ(x− x0) = 1

f̃(k) =
1√
2π

∫ ∞
−∞

dx e−ikxf(x) f(x) =
1√
2π

∫ ∞
−∞

dx eikxf̃(k)

ih̄
d

dt
|ψ(t)〉 = H|ψ(t)〉

U(t) = e−iHt/h̄

∆A =
√
〈A2〉 − 〈A〉2 ∆A∆B ≥ 1

2
|〈[A,B]〉|

∆x∆p ≥ h̄

2
∆E∆t ≥ h̄

2

d〈A〉
dt

= − i
h̄
〈[A,H]〉+

〈
∂A

∂t

〉
H =

P 2

2m
+ V (x) [X,P ] = ih̄

ψ(x) = 〈x|ψ〉 X = x P = −ih̄ d
dx

H = − h̄2

2m

d2

dx2
+ V (x)

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

c = 2.998 · 108 m/s h̄ = 1.055 · 10−34 Js qe = 1.602 · 10−19 C


