final exam: 4 problems, 4 hours

1. Consider quantum mechanical two-state system. An observable A has eigenstates $|+\rangle$ and $|-\rangle$, which satisfy

$$
A|+\rangle=|+\rangle, \quad A|-\rangle=-|-\rangle .
$$

The Hamiltonian of the system on the other hand satisfies equations

$$
H|+\rangle=E|+\rangle+i \delta|-\rangle, \quad H|-\rangle=-i \delta|+\rangle+E|-\rangle .
$$

where E ja δ are real numbers.
(a) (2p.) Write the matrix representations of the operators A and H in the basis given by the states $|+\rangle$ and $|-\rangle$.
(b) (2p.) Let the system be in the state $|+\rangle$. If the energy of the system is now measured, what are the possible outcomes of the measurements and their probabilities?
(c) (2p.) Denote the energy eigenvalues as ϵ_{+}and $\epsilon_{-}\left(\epsilon_{+}>\epsilon_{-}\right)$, and the corresponding eigenstates as $\left|\epsilon_{+}\right\rangle$and $\left|\epsilon_{-}\right\rangle$. If the energy measurement in part (b) resulted in ϵ_{+}, what is the state vector of the system immediately after the measurement? If A is now measured, what are the possible outcomes and their probabilities?
2. Consider a particle in a quantum mechanical symmetric double well, which has two orthonormal bound states, even and odd $(|E\rangle$ and $|O\rangle)$. Let their eigenenergies be E_{1} and E_{2}, i.e.

$$
\begin{aligned}
H|E\rangle & =E_{1}|E\rangle \\
H|O\rangle & =E_{2}|O\rangle .
\end{aligned}
$$

(a) (1p.) Suppose that at time $t=0$ the system is in the state

$$
|\Psi(0)\rangle=\alpha|E\rangle+\beta|O\rangle
$$

where $|\alpha|^{2}+|\beta|^{2}=1$. What is the state vector $|\Psi(t)\rangle$ at later times $t>0$?
(b) (3p.) When the system is in the state $(|E\rangle+|O\rangle) / \sqrt{2}$, the probability to observe the particle in the leftmost well is equal to 1 . When the state of the system is $(|E\rangle-|O\rangle) / \sqrt{2}$, the probability to find the system from the rightmost well is equal to 1 . Suppose that the system is intially, at $t=0$, prepared so that the particle is certainly in the leftmost well, i.e. $\alpha=\beta=1 / \sqrt{2}$. Compute the probability that at later times, $t>0$, the particle is found from the rightmost well. How long does it take, that the particle is found from the rightmost well with probability 1 ?
(c) (2p.) Suppose that the particle was found from the rightmost well at time t. What is the probability to find the particle in the leftmost well at time $3 t$, if no measurements are performed on the system during the time interval from t to $3 t$?
3. (a) (3p.) Let H be the Hamiltonian of the system and let A represent some observable. Derive the Ehrenfest theorem

$$
\frac{d\langle A\rangle}{d t}=-\frac{i}{\hbar}\langle[A, H]\rangle+\left\langle\frac{\partial A}{\partial t}\right\rangle .
$$

(b) (3p.) Consider the potential

$$
V(x)= \begin{cases}0, & x<-L / 2 \\ -V_{0}, & |x|<L / 2, \\ V_{0}, & x>L / 2\end{cases}
$$

The attached figure corresponds to values $V_{0}=1 \mathrm{eV}$ and $L=0.5 \mathrm{~nm}$. The scattering solutions and bound state solutions satisfy the time independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x)
$$

Write the most general normalizable solution of the Schrödinger equation when $E<0$ (but $E>-V_{0}$). Which conditions the wave function and its derivative have to satisfy at $x= \pm L / 2$?

4. The Hamiltonian of the one dimensional harmonic oscillator is

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} X^{2} .
$$

Define the raising and lowering operators as

$$
a=\sqrt{\frac{m \omega}{2 \hbar}} X+\frac{i}{\sqrt{2 \hbar m \omega}} P, \quad a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-\frac{i}{\sqrt{2 \hbar m \omega}} P
$$

(a) (1p.) Derive the commutation relation $\left[a, a^{\dagger}\right]=1$.
(b) (2p.) Consider the number operator $N=a^{\dagger} a$ and its eigenstates satisfying $N|n\rangle=n|n\rangle$. Show that a lowers and a^{\dagger} raises the eigenvalue by one, i.e.

$$
N a|n\rangle=(n-1) a|n\rangle, \quad N a^{\dagger}|n\rangle=(n+1) a^{\dagger}|n\rangle .
$$

(c) (1p.) Determine the constants C and C^{\prime} so that the states $|n-1\rangle=C a|n\rangle$ and $|n+1\rangle=C^{\prime} a^{\dagger}|n\rangle$ are normalized.
(d) (2p.) Compute the expectation values of the operators X and X^{2} in the state $|n\rangle$.

Useful formulas:

$$
\begin{gathered}
e^{i x}=\cos x+i \sin x \quad e^{i \pi}+1=0 \\
\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) \quad \cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right) \\
\sin (2 x)=2 \sin x \cos x \quad \cos (2 x)=\cos ^{2} x-\sin ^{2} x \\
\frac{1}{2}(1-\cos x)=\sin ^{2} \frac{x}{2} \quad \frac{1}{2}(1+\cos x)=\cos ^{2} \frac{x}{2} \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
\int_{-\infty}^{\infty} d x e^{-c x^{2}}=\sqrt{\frac{\pi}{c}} \quad \int_{-\infty}^{\infty} d x x^{2} e^{-c x^{2}}=\frac{\sqrt{\pi}}{2 c^{\frac{3}{2}}} \\
\int_{-\infty}^{\infty} d x \delta\left(x-x_{0}\right) f(x)=f\left(x_{0}\right) \quad \int_{-\infty}^{\infty} d x \delta\left(x-x_{0}\right)=1 \\
\tilde{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{-i k x} f(x) \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{i k x} \tilde{f}(k)
\end{gathered}
$$

$$
\begin{gathered}
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle \\
U(t)=e^{-i H t / \hbar} \\
\Delta A=\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}} \quad \Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle| \\
\Delta x \Delta p \geq \frac{\hbar}{2} \quad \Delta E \Delta t \geq \frac{\hbar}{2} \\
\frac{d\langle A\rangle}{d t}=-\frac{i}{\hbar}\langle[A, H]\rangle+\left\langle\frac{\partial A}{\partial t}\right\rangle \\
H=\frac{P^{2}}{2 m}+V(x) \quad[X, P]=i \hbar \\
\psi(x)=\langle x \mid \psi\rangle \quad X=x \quad P=-i \hbar \frac{d}{d x} \\
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x) \\
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+V(x) \psi(x, t) \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \\
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

$c=2.998 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \quad \hbar=1.055 \cdot 10^{-34} \mathrm{Js} \quad q_{e}=1.602 \cdot 10^{-19} \mathrm{C}$

