Exam: 4 problems, 4 hours

1. Consider a quantum-mechanical two-state system. An observable $A$ of the system has the eigenstates $|+\rangle$ and $|-\rangle$, which satisfy

$$
A|+\rangle=|+\rangle, \quad A|-\rangle=-|-\rangle .
$$

(a) (1p.) Write down the matrix representing the operator $A$ in the basis given by the eigenstates $|+\rangle$ and $|-\rangle$. Check that $A$ is Hermitian.
(b) (3p.) The Hamiltonian of the system is

$$
H=\left(\begin{array}{cc}
E & -i \delta \\
i \delta & E
\end{array}\right)
$$

where $E$ and $\delta$ are real numbers. Let the system be in the state $|+\rangle$. If the energy of the system is measured, what are the possible results, and the probabilities for observing them?
(c) (2p.) Denote the energy eigenvalues by $\epsilon_{+}$and $\epsilon_{-}\left(\epsilon_{+}>\epsilon_{-}\right)$, and the corresponding eigenstates by $\left|\epsilon_{+}\right\rangle$and $\left|\epsilon_{-}\right\rangle$. If the energy measurement of part (b) yielded the result $\epsilon_{+}$, what is the state vector of the system immediately after the measurement? If $A$ is now measured from the system, what results can be obtained, and with what probabilities?
2. Consider an electron, which is described by the Hamiltonian

$$
H=\frac{\hbar \omega}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

To the system are also related the observables

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),
$$

both of which have the eigenvalues $\pm \hbar / 2$.
(a) (2p.) At $t=0$ let the electron be in the eigenstate of $S_{x}$ corresponding to the eigenvalue $+\hbar / 2$. What is the probability of finding the result $+\hbar / 2$, if $S_{y}$ is measured at time $t$ ?
(b) (1p.) What is the state vector of the system immediately after the measurement performed in part (a), if the result of the measurement was $+\hbar / 2$ ?
(c) (2p.) Suppose that after the measurement of part (a) (which gave the result $+\hbar / 2)$ we wait for a time $T$ and measure $S_{y}$ again. What is the probability of the result being $+\hbar / 2$ ? For what values of $T$ do we get the result $+\hbar / 2$ with certainty (that is, with probability 1)?
(d) (1p.) Is $S_{y}$ a constant of motion? Explain your answer.
3. (a) (3p.) Starting from the time-dependent Schrödinger equation of wave mechanics, carry out the separation of space and time variables, and show that the wave functions of energy eigenstates have the form

$$
\Psi(x, t)=e^{-i E t / \hbar} \psi(x),
$$

where $\psi(x)$ satisfies the stationary Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x)
$$

(b) (3p.) Show that the probability density $\rho(x, t)=|\Psi(x, t)|^{2}$ and the probability current

$$
j(x, t)=-\frac{i \hbar}{2 m}\left(\Psi^{*}(x, t) \frac{\partial}{\partial x} \Psi(x, t)-\Psi(x, t) \frac{\partial}{\partial x} \Psi^{*}(x, t)\right)
$$

of a wave function $\Psi(x, t)$ satisfy the continuity equation

$$
\frac{\partial \rho(x, t)}{\partial t}=-\frac{\partial j(x, t)}{\partial x}
$$

4. (a) (3p.) Consider the potential

$$
V(x)= \begin{cases}0, & x<L / 2, \\ -V_{0}, & |x|<L / 2, \\ V_{0}, & x>L / 2\end{cases}
$$

In the figure below we have chosen $V_{0}=1 \mathrm{eV}$ and $L=0.5 \mathrm{~nm}$. The scattering states and bound states satisfy the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x)
$$

Write down the most general normalizable solution of the Schrödinger equation, when $E<0$ (but $E>-V_{0}$ ). What conditions must the wave function and its derivative satisfy at the points $x= \pm L / 2$ ?

(b) (3p.) The Hamiltonian of the one-dimensional harmonic oscillator is

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} X^{2}
$$

Define the lowering and raising operators

$$
\begin{aligned}
a & =\sqrt{\frac{m \omega}{2 \hbar}} X+\frac{i}{\sqrt{2 \hbar m \omega}} P \\
a^{\dagger} & =\sqrt{\frac{m \omega}{2 \hbar}} X-\frac{i}{\sqrt{2 \hbar m \omega}} P
\end{aligned}
$$

Derive the commutation relation $\left[a, a^{\dagger}\right]=1$. Consider then the eigenstates of the number operator $N=a^{\dagger} a$, satisfying $N|n\rangle=n|n\rangle$. Show that $a$ lowers and $a^{\dagger}$ raises the eigenvalue by one; that is,

$$
N a|n\rangle=(n-1) a|n\rangle, \quad N a^{\dagger}|n\rangle=(n+1)|n\rangle .
$$

## Useful information:

$$
\begin{gathered}
e^{i x}=\cos x+i \sin x \quad e^{i \pi}+1=0 \\
\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) \quad \cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right) \\
\sin (2 x)=2 \sin x \cos x \quad \cos (2 x)=\cos ^{2} x-\sin ^{2} x \\
\frac{1}{2}(1-\cos x)=\sin ^{2} \frac{x}{2} \quad \frac{1}{2}(1+\cos x)=\cos ^{2} \frac{x}{2} \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
\int_{-\infty}^{\infty} d x e^{-c x^{2}}=\sqrt{\frac{\pi}{c}} \quad \int_{-\infty}^{\infty} d x x^{2} e^{-c x^{2}}=\frac{\sqrt{\pi}}{2 c^{\frac{3}{2}}} \\
\int_{-\infty}^{\infty} d x \delta\left(x-x_{0}\right) f(x)=f\left(x_{0}\right) \quad \int_{-\infty}^{\infty} d x \delta\left(x-x_{0}\right)=1 \\
\tilde{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{-i k x} f(x) \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{i k x} \tilde{f}(k)
\end{gathered}
$$

$$
\begin{gathered}
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle \\
U(t)=e^{-i H t / \hbar} \\
\Delta A=\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}} \quad \Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle| \\
\Delta x \Delta p \geq \frac{\hbar}{2} \quad \Delta E \Delta t \geq \frac{\hbar}{2} \\
\frac{d\langle A\rangle}{d t}=-\frac{i}{\hbar}\langle[A, H]\rangle+\left\langle\frac{\partial A}{\partial t}\right\rangle \\
H=\frac{P^{2}}{2 m}+V(x) \quad[X, P]=i \hbar \\
\psi(x)=\langle x \mid \psi\rangle \quad X=x \quad P=-i \hbar \frac{d}{d x} \\
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x) \\
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+V(x) \psi(x, t) \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \\
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

$$
c=2.998 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \quad \hbar=1.055 \cdot 10^{-34} \mathrm{Js} \quad q_{e}=1.602 \cdot 10^{-19} \mathrm{C}
$$

