FYSE302 Electronics 1B Final Exam 11.5.2012

- 1. Briefly explain/describe:
 - (a) Common mode rejection ratio (CMRR) (1p)
 - (b) Half-wave and full-wave rectification (1p)
 - (c) Zener diode, and how it can be used in voltage regulation (2p)
 - (d) Negative and positive feedpack. Draw also the block diagrams (2p)
- 2. Consider the RCL-circuit shown in figure 1. Determine the resonance frequency ω_0 , i.e. the frequency when the total impedance of the circuit is purely real. What is the total impedance at the resonance?

Figure 1:

- 3. The input resistance $R_{\rm in}$ of a voltage amplifier needs to be as high as possible, so that the amplifier does not induce much load on the other circuitry. A simple inverting amplifier circuit shown in figure 2a) is not an ideal choice in this sense.
 - (a) What is the highest possible input impedance $R_{\rm in} = V_{\rm i}/I_{\rm i}$ for the circuit of figure 2a), if the gain $V_{\rm o}/V_{\rm i}$ needs to be -100 and resistors higher than 1 M Ω are not allowed to use.
 - (b) Better circuit is shown in figure 2b). Choose the components so that the gain $V_{\rm o}/V_{\rm i}=-100$ and the input impedance $R_{\rm in}=V_{\rm i}/I_{\rm i}=1$ M Ω . Largest resistor allowed is 1 M Ω . (Resistors larger than 1 M Ω usually induce problems)

Figure 2:

Figure on right represents a self-biased circuit for a bipolar transistor. Choose the values for $R_{\rm C}$, R_1 and R_2 in such a way that the operation point becomes $I_{\rm C}=1.25$ mA and $V_{\rm CE}=5$ V. Choose $R_{\rm E}=2$ k Ω and $V_{\rm CC}=15$ V. For the silicon transistor in question $\beta=100$ and $I_{\rm CBO}\approx0$ A. Now R_1 and R_2 have to be chosen so that $\beta\gg R_{\rm B}/R_{\rm E}\gg1$, where $R_{\rm B}=R_1||R_2$. Why? In calculations choose $R_{\rm B}/R_{\rm E}=10$.

- 5. In figure 3a) there is shown an amplifier circuit based on a npn-transistor and figure 3b) illustrates its small-signal model.
 - (a) Explain what is the small-signal model and what is it used for. What is descriped by the symbols $(r_{\pi}, C_{\pi}, \text{ etc.})$ in figure 3b)? Is there anything missing?
 - (b) Determine the gain of the system $A = V_O/V_S$ at low frequencies (C_{C1} ja C_{C2} more significant that the other capacitances) assuming $R_B \gg r_{\pi}$. Explain qualitatively what happens at very high frequencies and at middle frequencies.

Figure 3: