FYSE302 Electronics 1B Final Exam 25.5.2012

- 1. Briefly explain/describe:
 - (a) Dynamic resistance (2p)
 - (b) Common mode rejection ratio (2p)
 - (c) DA conversion (2p)
- 2. At the circuit shown in figure 1 $v_s(t) = 10\sqrt{2}\cos(\omega t)$ V. Determine the current flowing through the coil by using Theorem, when $\omega = 900$ Hz.

Figure 1:

- 3. The input resistance R_{in} of a voltage amplifier needs to be as high as possible, so that the amplifier does not induce much load on the other circuitry. A simple inverting amplifier circuit shown in figure 2(a) is not an ideal choice in this sense.
 - (a) What is the highest possible input impedance $R_{\rm in} = V_{\rm i}/I_{\rm i}$ for the circuit of figure 2(a), if the gain $V_{\rm o}/V_{\rm i}$ needs to be -100 and resistors higher than 1 M Ω are not allowed to use.
 - (b) Better circuit is shown in figure 2(b). Choose the components so that the gain $V_{\rm o}/V_{\rm i} = -100$ and the input impedance $R_{\rm in} = V_{\rm i}/I_{\rm i} = 1$ M Ω . Largest resistor allowed is 1 M Ω . (Resistors larger that 1 M Ω usually induce problems)

Figure 2:

- 4. The circuit presented in figure 3 is used as a power amplifier. The current amplification factor of a silicon transistor (specifications for PN2222 are attached, but not necessarily needed for solving the problem) is $\beta = 100$. Furthermore, $V_{\rm CC} = 15$ V, $R_1 = 10$ k Ω and $R_2 = 30$ k Ω
 - (a) Choose $R_{\rm E}$ and $R_{\rm C}$ in such a way that the operation point of the transistor becomes $V_{\rm CE} = 6$ V ja $I_{\rm C} = 2$ mA.
 - (b) Sketch the $i_{\rm C} v_{\rm CE}$ –curves and draw the dc load-line in the same figure.

Draw the ac load-line when $R_{\rm L} = 3 \text{ k}\Omega$. Find out the ac-component of the output voltage v_o , when the input signal at the base is $i_{\rm b} = 10 \sin(\omega t) \mu A$.

Figure 3:

5. Lets consider the circuit shown in Fig. 4, where $R_{\rm L} = 8 \,\mathrm{k}\Omega$ and $V_{\rm GG} = 2 \,\mathrm{V}$, and the values for the parameters describing the small-signal model of depletion field-effect MOSFET -transistor are $I_{\rm DSS} = 10 \,\mathrm{mA}$, $g_{m0} = 5000 \,\mu\mathrm{S}$ ja $r_{\rm d} = 50 \,\mathrm{k}\Omega$. Determine $I_{\rm D}$ and choose $V_{\rm DD}$ so, that at the operation point $V_{\rm DS} = 8 \,\mathrm{V}$. Calculate the voltage amplification $|v_{\rm o}/v_{\rm s}|$ at this operation point using the small-signal model. Here $v_{\rm s}$ and $v_{\rm o}$ are the complex amplitudes of the small signals. For a MOSFET:

$$i_{\rm D} = I_{\rm DSS} \left(1 - \frac{v_{gs}}{V_P} \right)^2, \quad g_m = \frac{di_{\rm D}}{dv_{\rm GS}}$$

and $g_{m0} = \left. \frac{di_{\rm D}}{dv_{\rm GS}} \right|_{v_{\rm GS}=0}$

Figure 4:

SEMICONDUCTOR®

PN2222

General Purpose Transistor

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units	
V _{CBO}	Collector-Base Voltage	60	V	
V _{CEO}	Collector-Emitter Voltage	30	V	
V _{EBO}	Emitter-Base Voltage	5	V	
I _C	Collector Current	600	mA	
P _C	Collector Power Dissipation	625	mW	
Тј	Junction Temperature	150	°C	
T _{STG}	Storage Temperature	-55 ~ 150	°C	

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =10μA, I _E =0	60		V
BV _{CEO}	Collector Emitter Breakdown Voltage	I _C =10mA, I _B =0	30		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =10μA, I _C =0	5		V
I _{CBO}	Collector Cut-off Current	V _{CB} =50V, I _E =0		0.01	μΑ
I _{EBO}	Emitter Cut-off Current	V _{EB} =3V, I _C =0		10	nA
h _{FE}	DC Current Gain	V _{CE} =10V, I _C =0.1mA	35		
		V _{CE} =10V, *I _C =150mA	100	300	
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		1	V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		2	V
f _T	Current Gain Bandwidth Product	V _{CE} =20V, I _C =20mA, f=100MHz	300		MHz
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		8	pF

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%