FYSE301, Electronics 1A, spring 2011
Final exam 18th March 2011. Do all five problems!

1. Explain briefly: (6 points)
a) Ideal operational amplifier
b) Voltage-current behaviour of a pn junction
c) The effect of doping to the electronic conductivity of a semiconductor
2. Calculate the current I_{L} through resistor R_{L} (Fig. 1.) by converting the remaining circuit (dashed line area) to its Thevenin equivalent and express I_{L} as a function of R_{L} (do not fix the value for R_{L} yet). Calculate I_{L} when $R_{L}=30 \Omega$. (6 points)

Fig. 1
3. Calculate the amplification $A=v_{0} / v_{i}$ and input resistance $R_{i}=v_{i} / i_{i}$ in a circuit shown in Figure 2 when switch K is
a) Short circuited,
b) Open.

Assume that the operational amplifier is ideal.(6 points)

Fig. 2.
4. Determine the voltage $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$ between points A and B and the current i for the circuit in Figure 3 (left), when a
a) Resistor, $R=7 \Omega$ is connected between the points A and B.
b) Ge-diode, whose current i as a function of its voltage $v=V_{A B}=V_{A}-V_{B}$ is $\mathrm{i}(\mathrm{v})=\mathrm{I}_{0}\left[\exp \left(\mathrm{v} / \mathrm{V}_{0}\right)-1\right]$, where $\mathrm{I}_{0}=2 \mu \mathrm{~A}$ and $\mathrm{V}_{0}=26 \mathrm{mV}$, is connected between the points A and B . The iv-curve for the diode is given in figure 3 (right). (6 points)

Fig. 3
5. In Figure 4 there is a biasing circuit that sets the quiescent (operation) point for MOSFET-transistor. Choose R_{S} and R_{D} such that $i_{D}=1 \mathrm{~mA}$ and $V_{D S}=V_{D}-V_{S}$ $=8 \mathrm{~V}$, when $\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}$. The parameters for enhancement-only mode NMOStransistor (in saturation) are $\mathrm{K}=0.25 \mathrm{~mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{T}}=2 \mathrm{~V}$. Let $\mathrm{R}_{\mathrm{g} 1}=\mathrm{R}_{\mathrm{g} 2}=1$ $\mathrm{M} \Omega$. (6 points)

Fig. 4.
Perhaps useful equations: $\sigma=n e \mu ; n=p=n_{i} ; n_{i}=e^{-E g / k T} ; i=I_{s}\left(e^{\mathrm{ev} / n k T}-1\right) ; i_{D}=K\left(v_{G S}-V_{T}\right)^{2}$; $\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\mathrm{v}_{\mathrm{GS}} / \mathrm{V}_{\mathrm{P}}\right)^{2} ; \beta=\alpha /(1-\alpha) ;$

