FYSE302 Electronics I (part B) Final exam (retake) 11.6.2010

Lecturer: Arto Javanainen

- 1. Briefly define/explain:
 - a. How to convert alternating current (AC) into direct current (DC) (2 p.)
 - b. The safe/allowed operation area for a transistor in a power amplifier circuit (1 p.)
 - c. AD converter types and their operation principles (AD=analog-to-digital) (3 p.)
- 2. Define the current I_2 in the circuit in figure 1. $E = 10 \angle 0^\circ$, $\omega = 2$ rad/s, $R_1 = 8\Omega$, $R_2 = 20\Omega$, L = 8 H ja C = 0.05 F.

3. Define v_0 for the circuit in figure 2 (R-2R ladder). For what this circuit can be used for? (tip: use superposition principle)

- 4. Let's consider the amplifier stage in figure 3, where the transistor's current gain $\beta=80$, operation voltage $V_{CC}=15$ V, and components $R_1=20$ k Ω ja $R_2=60$ k Ω . The output resistance of the signal source is $R_S=500$ Ω
 - a) Determine the R_E so that in the transistor's operation point the $I_C = 2$ mA.
 - b) Replace the transistor with a simple small-signal model (r_π β -model, where $r_\pi{=}0.025 V/I_B).$ Define the resistance R_C so that the amplification in the center-frequency range is $|v_o/v_s|=160.$ In this frequency range the intrinsic capacitances in the transistor can be neglected and the capacitors C_{C1} , C_{C2} and C_E are acting as a short-circuits. Assume that there is another amplifier stage, with input resistance of $10~k\Omega$, connected in the output.

5. A system is represented by the following equations:

$$V_2 = V_1 - V_5$$

$$V_3 = A V_2$$

$$V_4 = V_3 + D V_5$$

$$V_5 = B V_4$$

$$V_6 = C V_5,$$

where A, B, C and D are the transfer functions for the different blocks of the system. V_i :s represent the signals at different locations in the system. Draw the block diagram and define the total transfer function $G_{TOT} = V_6/V_1$ for the whole system.