FYSE302 Electronics I (part B) Final exam 21.5.2010 Lecturer: Arto Javanainen

- 1. Briefly define/explain:
 - a. Root-mean-square value (RMS) (1 p.)
 - b. Series resonance (1 p.)
 - c. Half- and full-wave rectification (1 p.)
 - d. Dynamic range of an amplifier (1 p.)
 - e. Active high-pass filter based on an operational amplifier (Draw a circuit and sketch the Bode plot for the magnitude of the transfer function). (2p)
- 2. Define the transfer function v_o/v_s as a function of frequency for the circuit in figure 1, where v_o and v_s are the complex amplitudes for the voltages across the resistance $[v_o(t)]$ and the signal generator $[v_s(t) = V_m \cos(\omega t)]$, respectively. Draw the Bode plots for both the magnitude and the phase, when L = 200 mH and R = 500 Ω . For what the circuit can be used for?

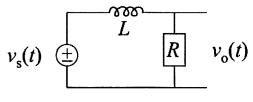


figure 1.

3. Define the transfer function U_2/E for the circuit in figure 2. $R_2 = 9R_1, R_1 = 1 \Omega, R = 1 \Omega, C = 1 F.$

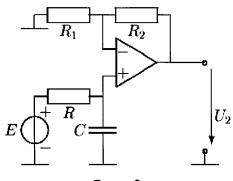


figure 2.

Turn the page!

2. Define a) the operation point (collector current I_C and collector-to-emitter voltage V_{CE}) and b) the AC-voltage amplification at center-frequency range for the commonemitter amplifier in figure 3. What determines the amplification? Typical values for the transistor parameters are: $h_{fe} \approx \beta = 250$, $h_{ie} \approx r_{\pi} = 5 \text{ k}\Omega$, $V_{BE} = 0.7 \text{ V}$.

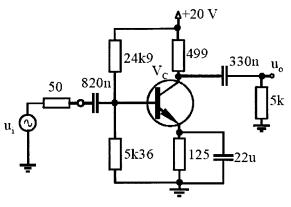


figure 3.

5. The system is represented by the following equations:

$$V_5 = BV_3$$

 $V_2 = V_1 - V_4$
 $V_3 = AV_2$
 $V_4 = CV_3$,

where A, B and C are the transfer functions for the different blocks in the system and V_i :s are the signals at different points in the system. Draw the block diagram and define the total transfer function $G_{TOT} = V_5/V_1$ for the whole system.

4.