FYSE302 Electronics 1B Final Exam 27.5.2011

- 1. Briefly explain/describe:
 - (a) Dynamic resistance (2p)
 - (b) Common mode rejection ratio (2p)
 - (c) DA conversion (2p)
- 2. At the circuit shown in figure $1 v_s(t) = 10\sqrt{2}\cos(\omega t)$ V. Determine the current flowing through the coil by using the venin's theorem, when $\omega = 900$ Hz.

Figure 1:

- 3. The input resistance $R_{\rm in}$ of a voltage amplifier needs to be as high as possible, so that the amplifier does not induce much load on the other circuitry. A simple inverting amplifier circuit shown in figure 2(a) is not an ideal choice in this sense.
 - (a) What is the highest possible input impedance $R_{\rm in} = V_{\rm i}/I_{\rm i}$ for the circuit of figure 2(a), if the gain $V_{\rm o}/V_{\rm i}$ needs to be -100 and resistors higher than 1 M Ω are not allowed to use.
 - (b) Better circuit is shown in figure 2(b). Choose the components so that the gain $V_{\rm o}/V_{\rm i}=-100$ and the input impedance $R_{\rm in}=V_{\rm i}/I_{\rm i}=1$ M Ω . Largest resistor allowed is 1 M Ω . (Resistors larger that 1 M Ω usually induce problems)

Figure 2:

- 4. The circuit presented in figure 3 is used as a power amplifier. The current amplification factor of a silicon transistor is $\beta=100$. Furthermore, $V_{\rm CC}=15$ V, $R_1=10~{\rm k}\Omega$ and $R_2=30~{\rm k}\Omega$
 - (a) Choose $R_{\rm E}$ and $R_{\rm C}$ in such a way that the operation point of the transistor becomes $V_{\rm CE}=6$ V ja $I_{\rm C}=2$ mA.
 - (b) Sketch the $i_{\rm C}-v_{\rm CE}$ –curves and draw the dc load-line in the same figure.

Draw the ac load-line when $R_{\rm L}=3~{\rm k}\Omega$. Find out the ac-component of the output voltage v_o , when the input signal at the base is $i_{\rm b}=10\sin(\omega t)~\mu{\rm A}$.

Figure 3:

5. Lets consider the circuit shown in Fig. 4, where $R_{\rm L}=8~{\rm k}\Omega$ and $V_{\rm GG}=2~{\rm V}$, and the values for the parameters describing the small-signal model of depletion field-effect MOSFET -transistor are $I_{\rm DSS}=10~{\rm mA}$, $g_{m0}=5000~{\rm \mu S}$ ja $r_{\rm d}=50~{\rm k}\Omega$. Determine $I_{\rm D}$ and choose $V_{\rm DD}$ so, that at the operation point $V_{\rm DS}=8~{\rm V}$. Calculate the voltage amplification $|v_{\rm o}/v_{\rm s}|$ at this operation point using the small-signal model. Here $v_{\rm s}$ and $v_{\rm o}$ are the complex amplitudes of the small signals. For a MOSFET:

$$i_{\mathrm{D}} = I_{\mathrm{DSS}} \left(1 - \frac{v_{gs}}{V_P}\right)^2, \quad g_m = \frac{di_{\mathrm{D}}}{dv_{\mathrm{GS}}}$$
 and $g_{m0} = \frac{di_{\mathrm{D}}}{dv_{\mathrm{GS}}}\Big|_{v_{\mathrm{GS}}=0}$

Figure 4:

PN2222

General Purpose Transistor

1. Emitter 2. Base 3. Collector

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	60	٧
V _{CEO}	Collector-Emitter Voltage	30	V
V _{EBO}	Emitter-Base Voltage	5	V
l _C	Collector Current	600	mA
Pc	Collector Power Dissipation	625	mW
Tj	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C

$\textbf{Electrical Characteristics} \ \, \textbf{T}_{a} = 25^{\circ} \textbf{C} \ \, \textbf{unless otherwise noted}$

Symbol	Parameter	Test Condition	Min.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =10μA, I _E =0	60		V
BV _{CEO}	Collector Emitter Breakdown Voltage	I _C =10mA, I _B =0	30		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =10μA, I _C =0	5		V
Ісво	Collector Cut-off Current	V _{CB} =50V, I _E =0	"	0.01	μА
I _{EBO}	Emitter Cut-off Current	V _{EB} =3V, I _C =0		10	nA
h _{FE}	DC Current Gain	V _{CE} =10V, I _C =0.1mA V _{CE} =10V, *I _C =150mA	35 100	300	
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		1	V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		2	V
f _T	Current Gain Bandwidth Product	V _{CE} =20V, I _C =20mA, f=100MHz	300		MHz
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		8	pF

^{*} Pulse Test: Pulse Wdth≤300μs, Duty Cycle≤2%