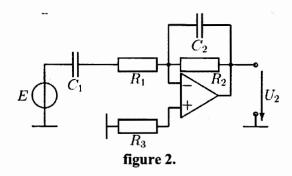
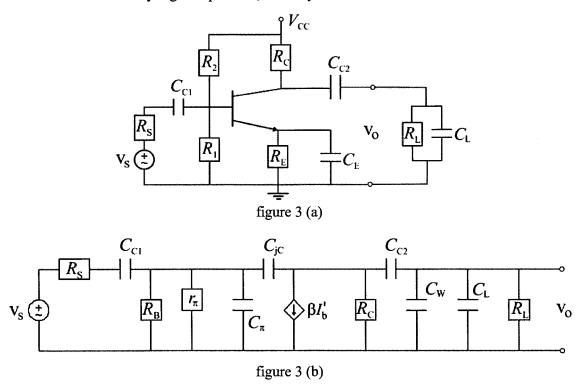

FYSE302 Electronics I (part B)


Final exam 28.5.2010

Lecturer: Arto Javanainen


- 1. Briefly define/explain:
 - a. Common Mode Rejection Ratio or CMRR (1 p.)
 - b. Parallel resonance (1 p.)
 - c. Passive high-pass filter (Draw a circuit and the Bode plot for the magnitude of the transfer function). (2 p.)
 - d. Zener-diode and its use as a voltage regulator (2 p.)
- 2. Calculate the voltage U in the circuit in figure 1. $E = 10 \angle 0^{\circ}$, $\omega = 100$ rad/s, $R_1 = 5\Omega$, $R_2 = 20\Omega$, L = 100mH ja C = 1mF.

3. Define the transfer function U_2/E (j ω) for the circuit in figure 2. What happens: (1) at low frequencies, (2) high frequencies? $R_1 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 100 \text{ k}\Omega$, $R_1 = 10 \text{ m}$.

- 4. In figure 3a) there is a amplifier circuit based on a npn-type bipolar transistor. The corresponding small-signal model is presented in figure 3b).
 - a. Explain what is a small-signal model? And what it is used for? What are the different elements in figure 3b) $(r_{\pi}, C_{\pi}, \text{etc.})$ representing? Is something missing in the picture?
 - b. Define the amplification $A = V_O/V_S$ at low frequencies (i.e. C_{C1} and C_{C2} are considered more significant than the other capacitors). Assume that $R_B >> r_\pi$. Explain qualitatively what happens to the amplification at center-frequency range and at very high frequencies, and why is it so.

5. A system is represented by the following equations:

$$V_2 = A V_1 V_3 = V_2 - DEV_6 V_4 = B V_3 V_5 = V_4 + EV_6 V_6 = CV_5,$$

where A, B, C, D and E are the transfer functions for the different blocks of the system. V_i:s represent the signals at different locations in the system. Draw the block diagram and define the total transfer function $G_{TOT} = V_6/V_1$ for the whole system.