FYSH300 Particle physics

2. half-course exam (2. vilikoe) 19.12.2012: 4 problems, 4 hours. Return the
the question sheet and particle tables together with your answer sheets — remember
to write down your name in the problem sheet!

1. a)

b)

d)

What does one mean by running of the strong coupling, and by asymptotic freedom

of QCD? (1p)

Explain, using Feynman diagrams, how one can probe the strong coupling constant
a, by measuring the decay width I'(t~ — v, + hadrons). Indicate how the width
['(t~ — v, + hadrons) depends on as. (1p)

The absolute values of the elements of the CKM-matrix have been measured to be
as follows (ignoring the experimental error bars here):

|Vial Vsl | Vi 0.97427 0.22534 0.00351
Va| |Ves] V| | = | 0.22520 0.97344 0.0412
Vidl  Vis| Vil 0.00867 0.0404 0.999146

Using this, estimate the ratio of the following decay widths:

F(B+(ul_)_) — K*(u_é) +l°(ua))
['(B*(ub) = 7t (ud) + D°(uc))

where the quark content of the hadrons is shown in the parentheses, and where you
don’t have to think about any phase-space effects. Draw also the Feynman graphs
for these processes. (2p)

Using lowest order QED perturbation theory, estimate the value of the ratio

o(ete” — hadrons)
olete” — ptp”)

R:

in the region /s = 4...8 GeV in the cases of No = 3 and Ng = 4 colors. Draw
the Feynman diagrams for these processes and indicate the coupling strengths in
each vertex. Above the mass thresholds of the final state particles, you can assume
an ultrarelativistic case, i.e. massless particles. [Note: this is a short calculation but
answer, however, in sufficient details!] (2p)



. Consider a theory whose Lagrange density is

1
L=~ FuF" + (D) (D'6) = 1°6"6 — N7 6)’,

where ¢ is a complex scalar field which depends on the coordinate 4-vector x and
which describes a charged spin-0 particle. The gauge field is A, and the field strength
tensor is F), = 0,4, — 0,A4,. This theory is invariant in local U(1) gauge (phase)
transformations,

¢ gt Uz)p, where U(z) =@

where a(x) is real. The covariant derivative, D,, = 0,—ieA,,, is required to transform
in these gauge transformations as

a)

b)

c)

(oW
~—

L=

D6 28 U(x)D,o.

Derive the transformation law for the gauge field A, in these gauge transfor-
mations. (1p)

Show, as briefly as possible, that ¢*¢ and (D,¢)*(D"¢), and F),, and thus also

F,,F" . are invariant in these gauge transformations. (1p)

Let’s assume that A > 0 but p? < 0, so that the Higgs mechanism is needed
to find out the physical fields and masses of the theory. You don’t have to
do a detailed calculation here but explain the principle, i.e. write down how
the fields ¢(x) and A,(z), and the terms ¢*¢ and (D, ¢)*(D"¢) and F,, F"
transform in the Higgs mechanism. (1p)

After the Higgs mechanism, the Lagrangian of the broken-symmetry theory
becomes

1 1 1 1, 1
B F 50,0 he XS 0 A A Xoh® NS¢ A AR oe A, A

where v* = —p%/\ and h = h(z) is the real scalar field.
i) Identify the mass terms and the particle masses in this theory (the factors
of 2 you do not need to specify). (1p)

ii) Identify all the interaction terms of the broken-symmetry theory, and draw
the vertices which each of these terms describes. In the figure, indicate the
interaction strength in the vertex too. (1p)

iii) Draw all the tree-level (=non-loop) Feynman diagrams for the scattering
A+A—h+h

which this broken-symmetry theory predicts. Indicate the coupling strengths
in the graphs. (1p)



3.

Let’s consider the Standard Model (SM) Higgs particle (H®) production and decays
here.

a) One production channel through which the SM Higgs particle is searched for
in the high-energy p+p collisions at the LHC, is the heavy-vector-boson fusion
with tagged jets (one in the forward direction and one in the backward di-
rection). Draw a parton model example graph of such a SM Higgs production
channel, and identify the colliding partons, beam jets, tagged jets and Higgs
in the figure. (1p)

b) Write down, schematically, an expression for such a Higgs production cross
section, do(p+p — H®+2jets + X), according to collinear factorization. (1p)

Consider then the following possible SM Higgs decay channels, marked in the figure
on the next page (these are simulations for different Higgs masses):

¢) Draw an example Feynman graph of the SM Higgs decay shown in each panel
(draw these below each panel). Identify the particles and draw the arrows in
your diagrams. (1p)

d) Into each panel, identify the Higgs signal particles and the following detec-
tor parts of the CMS experiment: Tracking chamber (TC), electromagnetic
calorimeter (ECAL), hadron calorimeter (HCAL), muon detector (MD) (2p)

Let’s then look at the recent measurements, shown in the two figures below.
Left: The invariant mass distribution of four leptons (I7171717)
Right: The invariant mass distribution of e* 7.

e) Explain why in the four-lepton channel there is a peak at my; ~ 125 GeV,
while in the ep channel such a peak is not seen at my, ~ 125 GeV. (1p)
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Fig. 4. Distribution of the four-lepton invariant mass for the ZZ — 4¢ analysis. Fig. 7. D istripution of mye for the z.ero—jet e c§tegory in the H > WW s.earch at
The points represent the data, the filled histograms represent the background, 8 TeV. The signal expected from a Higgs boson with a mass my = 125 GeV is shown

and the open histogram shows the signal expectation for a Higgs boson of mass

added to the background.

my = 125 GeV, added to the background expectation. The inset shows the my, dis-
tribution after selection of events with Kp > 0.5, as described in the text.
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4. Consider the scattering

e (pa) + 1~ (po) = €™ (pe) + 1 (pa)

at the ultrarelativistic limit, where the particle masses can be neglected, and in the
leading order of the electromagnetic coupling. The 4-momenta of the particles are
shown in the parentheses.

a) Using the Feynman rules of QED (see the attachment), compute the unpola-
rized differential cross section

do  |M|?
dQr  64n2s

of this scattering and express the final result in terms of the Mandelstam
variables s = (pq+pp)?, t = (pa —pe)? and u = (py —pq)?. [Hint: Formulate the
calculation in terms of the leptonic tensors L, and LAY . See the collection

of formulae in the end of the paper for help in doing the spin summations.|
(6p)

Bonus problem (extra +2p available) — do if you still have time and energy left!

b) Let’s then suppose that instead of a spin—% particle the muon is a spin-0 par-
ticle, keeping however the electron as a spin—% particle. Compute the unpola-
rized differential cross section -%% again. In this case the Feynman rule for the

Qs
muon—photon vertex is not —iefy” but —ie(py, + pq)”, and the Feynman rule
for the external muon legs is just 1. Express again the result in terms of the
Mandelstam variables. [Hint: Before squaring the amplitude M, use momen-
tum conservation and the Dirac equations pu(p) =~ 0, u(p)p ~ 0 to simplify the
expression. Make use of the leptonic tensor you derived above.]



Collection of formulae
G = g"=diag(1, -1, -1, -1)
A'B,=A'B"'— A-B
{7} =AY+t =291
YT = AOya0
Yy =41y
Vo @Y = —2q, where ¢ = v,a"
Vo p Y =4a-b

Yuthet =—=2¢ha

7T =77, where 4* = in%y'y*y®
(V) =14
{7} =0

Tr(y#y7) = 4g™
Tr(y#"2"y7) = 49" 9" — g"°9"" + g"7g"")
("*) =

Tr(/yln,yuz . .,y,uzn-u) =0

Tr

Projection operators for Dirac spinors:

> u =p+m o (p)p)(p) = p—m,
s=1,2 s=1,2
where 7 = uf+° and 7 = vy
Dirac equations: (p—m)u(p) =0  (p+m)v(p) =0

Cross section ab — cd (when mgp = meq):

Spherical coordinates:
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338 Apiw;ndix_ C Feynman Rules and Integrals

C.1 Feynman Rules — General Discussion

?Xt particl::‘sl?nest;:le initial or final state one writes the following factor:
or
(2) Spin gero Bogon. e i o). - L
= i Boson ----------- " . .. ) or
GEr > ) %pelrt € l?f\) is the polarization 4-vector for a boson th;]; hehc::;}e' e
fotems - the ca:e of a massless spin one boson propagating along
with 4-momentum ky given by :
| kn - -
e ~ (c1))
p=l ol =
ks
with ko = |ks|, the polarization 4-vectors are given by
0
LI c12)
A ==x1)= 2 la] - (
- ' 0
~for ‘helicity +1. The polarization 4-vectors satisfy
: ke=0, (C.1.9)
and e=-1 (C1.4)

. I ; -1.1 b“t-
Eﬂr a massil 4— tum glv by (c )
Wlt\h kn = ka + Mz one a].so ]]83 the 10ngltudmal ﬂta-te

ks o
: LR " (C.15)
EF(A — 0) = 'ﬁ 0 H | (
! ko
. i _ -
' “wheére M is the boson mass. - .
1 d spin s
in 1/2 fermion of momentum p an
Qe '_) ) ?xfl;xtl,al state ......... u(p, 5) on the right -
in final state ........... ii(p, 8) on the left oin s
(d) Spin 1/2 antifermion of momentum p and sp
GV in initial state ......... %(p, ) on the l?ft
in final state ........... v(p, 5) on the right

al Li Propagators): o .
IEI;t.ciniln:lerI;:&ﬁnEa desl::ibes a particle of momentum ¢ az_1& mass m. Some
examples are as follows: (5 5 b)

| QEV—) (b) eey vertex

C.2 Loop Integrations 339

(2) Spin Zero Boson :
i

@ —m?tic : (C-1.8)
@Eb =  (b) Photon (Feynman Gauge)
| Ak ~ (cay)

(<) Spin One Boson . :
—i (9w — gugv/m?)

| - s (C.18)
‘ 7! (d) Spin 1/2 fermion . I
i Qeo . ; i) s
P s ©a.9)

For antifermions one uses the same propagator, treating the an-
tifermion as a fermion of opposite 4-momentum (i.e., —q).

Vertex Factors:
For each intersection of three .

factor which depends on the structure of the interaction Lagrangian. Some
examples are shown in Fig. C.1. .

(a) Three scalar boson vertex
—ig : (C.1.10)

—iey, }"“ (C.1.11)

Here ¢ is the charge of the electron and the fine structure constant

o = e?/(4r).
(c) Charged spin zero boson-photon vertex
~iQ(p1 + p2)y. - (C112)
- (d) Four point mnpﬁng for charged spin zero boson-photon
2iQ%,, (C.1.13)

Loops and Combinatorics:

(a) For each loop with undetermiried momentum k ........ fd%/(2m)*

Here, the integral runs over all values of the momentum. 2
(b) For each closed fermion loop ............

|

(c) For each closed loop containing n identical bosons ...... 1/n!

(br_more) lines at one point there is a vertex

-86%-
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