FYSH300 fall 2013

Midterm exam Friday November 15, 2013. Time: 4 hours. Välikoe pe 15.11.2013. Aikaa 4 tuntia. Answer in Finnish or English. Vastaa valintasi mukaan suomeksi tai englanniksi.
Clebsch-Gordan table and potentially helpful figures on the flip side of the paper.

1. (a) (1p) What is the definition of a cross section (in terms of experimentally measured quantities)?
(b) (1p) What is a resonance?
(c) $(2 p)$ What is the "electron number"? Is it conserved in nature? If not, how is the violation observed?
(d) (2p) We know that π^{0} and η are pseudoscalar mesons, i.e. $J^{P C}=0^{-+}$particles, and that the photon is a vector, i.e. 1^{--}. Out of the following 4 reactions, which 2 are forbidden due to C or P conservation in the strong and electromagnetic interactions?
i. $\eta \rightarrow 2 \pi^{0}$
ii. $\eta \rightarrow 3 \pi^{0}$
iii. $\eta \rightarrow 2 \gamma$
iv. $\eta \rightarrow 3 \gamma$

Reminder: the parity of a state with particles a and b is $P=P_{a} P_{b}(-1)^{L}$.
2. The HERA accelerator at DESY in Germany made electron-proton collision experiments with energies $E_{e}=30 \mathrm{GeV}$ and $E_{p}=920 \mathrm{GeV}$. You can assume that the proton and electron are massless. Consider an elastic interaction: $e+p \rightarrow e+p$. If the scattering angle of the outgoing electron with respect to the direction of the incoming electon in the (laboratory) frame where the beam energies are given above is 60°; i.e. $\cos \theta=1 / 2$, what is the scattering angle of the outgoing electron in the CMS frame? Draw a figure!
3. The following reactions are not possible, at least in the standard model, why?
(a) (1p) $e^{-}+\bar{\nu}_{\mu} \rightarrow \nu_{e}+\mu^{-}$
(b) (1p) $e^{+}+e^{-} \rightarrow \gamma$

The following reactions are possible. What interactions cause them? (If they can happen through different interactions, name the strongest/most likely one.) For the electroweak ones draw one of the Feynman diagrams by which the reaction can happen. For the strong ones draw a quark diagram; is a resonance possible?
(c) (1p) $K^{-}+p \rightarrow \Sigma^{-}+\pi^{+}$
(d) (1p) $K^{+} \rightarrow \pi^{0}+e^{+}+\nu_{e}$
(e) $(1 \mathrm{p}) \pi^{0} \rightarrow 2 \gamma$
(f) (1p) $\nu_{\mu}+n \rightarrow \mu^{-}+p$
4. Consider pion-nucleon scattering at the CMS energy $\sqrt{s}=m_{\Delta}=1232 \mathrm{MeV}$. Show that isospin symmetry leads to the following ratio of the cross sections:

$$
\begin{equation*}
\sigma\left(\pi^{+}+p \rightarrow \pi^{+}+p\right): \sigma\left(\pi^{-}+p \rightarrow \pi^{0}+n\right): \sigma\left(\pi^{-}+p \rightarrow \pi^{-}+p\right)=9: 2: 1 \tag{1}
\end{equation*}
$$

You may use the known isospin assignments

$$
\begin{align*}
-\left|\pi^{+}\right\rangle,\left|\pi^{0}\right\rangle,\left|\pi^{-}\right\rangle & =|1,1\rangle,|1,0\rangle,|1,-1\rangle \tag{2}\\
|p\rangle,|n\rangle & =\left|\frac{1}{2}, \frac{1}{2}\right\rangle,\left|\frac{1}{2},-\frac{1}{2}\right\rangle \tag{3}\\
\left|\Delta^{++}\right\rangle,\left|\Delta^{+}\right\rangle,\left|\Delta^{0}\right\rangle,\left|\Delta^{-}\right\rangle & =\left|\frac{3}{2}, \frac{3}{2}\right\rangle,\left|\frac{3}{2}, \frac{1}{2}\right\rangle,\left|\frac{3}{2},-\frac{1}{2}\right\rangle,\left|\frac{3}{2},-\frac{3}{2}\right\rangle \tag{4}
\end{align*}
$$

and the information on the cross section at the resonance peak $\sqrt{s} \approx m_{R}$

$$
\begin{equation*}
\sigma_{a b \rightarrow c d}=\frac{\pi}{\left(q_{i}^{\mathrm{TRF}}\right)^{2}} \frac{\Gamma_{R \rightarrow a b} \Gamma_{R \rightarrow c d}}{\left(\sqrt{s}-m_{R}\right)^{2}+\Gamma^{2} / 4} \tag{5}
\end{equation*}
$$

where $\Gamma_{R \rightarrow a b}$ is the decay width for the resonance decay $R \rightarrow a b$.
36. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONIC

Quark assignments for lightest baryons.

Lightest meson nonet (pseudoscalar mesons consisting of one u, d or s quark and one \bar{u}, \bar{d} or \bar{s} antiquark.) Reminder: strange quark has $S=-1$. From S and the electric charge Q of the meson you can reconstruct the quark content.

