FYSH300 Particle physics
2. half-course exam (2. vilikoe) 13.12.2013: 4 problems, 4 hours.

1. a) What is meant by deep inelastic electron-proton scattering, and what is the main
purpose of such collision measurements? (1p)

b) Draw a detailed parton-model graph of the Standard Model (SM) Higgs produc-
tion&decay process, where the Higgs is produced in p + p collisions through heavy-
vector-boson fusion with tagged jets (one in the forward direction and one in the
backward direction), and where the Higgs then decays into a muon-antimuon pair
and 2 jets. All the vertices appearing in your graph must be basic SM vertices —
consult the attachments if needed. Identify the colliding protons and partons, beam
jets, tagged jets, decay-jets and all other particles in your graph. (1p)

c) Let’s look at the SM Higgs measurements shown in the figures below.
Left: The invariant mass distribution of four leptons (IT171717)
Right: The invariant mass distribution of e*uT
Explain why in the four-lepton channel there is a peak at my; ~ 125 GeV, while
in the ey channel such a peak is not seen at my ~ 125 GeV. (1p)
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Fig. 4. Distribution of the four-lepton invariant mass for the ZZ — 4¢ analysis. Fig. 7. Distribution of my, for the zero-jet e category in the H — WW search at
The points represent the data, the filled histograms represent the background, 8 TeV. The signal expected from a Higgs boson with a mass my =125 GeV is shown
and the open histogram shows the signal expectation for a Higgs boson of mass added to the background.

my = 125 GeV, added to the background expectation. The inset shows the my, dis-

tribution after selection of events with Kp > 0.5, as described in the text.



d)

Sketch a cross-section figure of the LHC’s CMS detector, where you put the beam
pipe (BP), muon detector (MD), electromagnetic calorimeter (ECAL), tracking
chamber (TC), and hadron calorimeter (HCAL), at their correct places. (1p)

The absolute values of the elements of the CKM-matrix have been measured to be
as follows (ignoring the experimental error bars here):

Vidl Vsl |V 0.97427 0.22534 0.00351
Vel Vel V| | = [ 0.22520 0.97344 0.0412
Vial Vis| Vil 0.00867 0.0404 0.999146

Using this, estimate the following ratio of the BT meson decay widths:

F(B+(ul§) — K+(u,§) +lo(uﬂ))
['(B*(ub) = 7t (ud) + D°(uc))

where the quark content of the hadrons is shown in the parentheses, and where you
don’t have to think about any phase-space effects. Draw also the Feynman graphs
for these processes. (2p)

. Consider a theory whose Lagrange density is

ﬁ—l ¢8N¢_M_2¢2_ﬂ¢3_3¢4+w M — mab i ath~°
= 5% 5 i 1 Va0 —mp +-igihy i

where ¢ is a real field for a spin-0 particle which we call here ¢, and v is the Dirac
spinor for a spin-% particle which we call here F'. The ~, are the Dirac gamma
matrices and 7° is given in the collection of the formulae. As usual, 1) = 1T+°. The
constants 2, n, A\, m and g are positive. Let’s also assume that the potential of
the theory has the minimum at ¢ = 0, so that the particle content, masses and
interactions of the theory can be directly read off from the above Lagrangian.

Identify the kinetic terms, mass terms and interaction terms of this theory. (1p)

For each interaction term, draw the basic vertex, indicate the particles participating
in the vertex, and indicate also the interaction strength of each vertex. (2p)

Using the basic vertices of this theory [be extra careful in the b)-item above!], draw
all the tree-level (=non-loop) Feynman diagrams which this theory predicts for the
following scatterings, and indicate for each graph what is its dependence on the
interaction strengths (3p):

i) F+F - F+F
i) F+F = ¢+ ¢
i) ¢+ ¢ — o+ ¢



3. Consider a theory whose Lagrange density is

1
L=~ FuF" + (D) (D'6) = 1°6"6 — N7 6)’,

where ¢ is a complex scalar field which depends on the coordinate 4-vector x and
which describes a charged spin-0 particle. The gauge field is A, and the field strength
tensor is F), = 0,4, — 0,A4,. This theory is invariant in local U(1) gauge (phase)
transformations,

¢ gt Uz)p, where U(z) =@

where a(x) is real. The covariant derivative, D,, = 0,—ieA,,, is required to transform
in these gauge transformations as

D6 28 U(x)D,o.

a) Derive the transformation law for the gauge field A, in these gauge transfor-
mations. (2p)

b) To test your understanding of the 2013 Physics Nobel prize(!): Let’s assume
that A > 0 but p? < 0, so that the Higgs mechanism is needed to find out the
physical fields and masses of the theory. Perform the Higgs mechanism for this
theory in detail. In the end, identify the physical particle content of the theory,
the Higgs particle and the masses of the particles — obtaining the masses? up
to factors 2 is just fine, you don’t need to consider Euler-Lagrange equations
here. (4p) Hint: Start by writing ¢(z) = U(z) '¢(x) where ¢(z) is a real
field which accounts for the oscillations around the potential’s minimum at

2 2
‘¢’1?nin = % = %




4. The figure below describes the measurement of the angular distribution (in the
CMS frame) of muons produced in the unpolarized scattering

et +e = ut+pu
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Starting from the Feynman rules, compute the differential cross section do /d cos 6*
of this process, in the lowest order in the electromagnetic interaction. Express the
final result in terms of the scattering angle * in the CMS-frame, fine-structure
constant o = % and the CMS energy /s, assuming that /s is in the range 15—40
GeV. After this, form the quantity

do
d cos 0*

)
cos 0*=0

do

d cos 0*

which is shown in the figure and compare your result with the figure. In the end,
explain briefly what one can learn from measuring such an angular distribution.

Instructions: Let’s consider here only the high-energy limit, i.e. you can set the
particle masses in the initial and final states to zero. Please use the following nota-
tion: p, for the 4-momentum of the positron, p, for the 4-momentum of the electron,
p. for the antimuon and p, for the muon. Mark all the intermediate steps you per-
form in your answer sheet — and not on a scrap paper. Make use of the attached
table (Field C.1) of the Feynman rules and the collection of the formulae.



Collection of formulae
G = g"=diag(1, -1, -1, -1)
A'B,=A'B"'— A-B
{7} =AY+t =291
YT = AOya0
Yy =41y
Vo @Y = —2q, where ¢ = v,a"
Vo p Y =4a-b

Yuthet =—=2¢ha

7T =77, where 4* = in%y'y*y®
(V) =14
{7} =0

Tr(y#y7) = 4g™
Tr(y#"2"y7) = 49" 9" — g"°9"" + g"7g"")
("*) =

Tr(/yln,yuz . .,y,uzn-u) =0

Tr

Projection operators for Dirac spinors:

> u =p+m o (p)p)(p) = p—m,
s=1,2 s=1,2
where 7 = uf+° and 7 = vy
Dirac equations: (p—m)u(p) =0  (p+m)v(p) =0

Cross section ab — cd (when mgp = meq):

Spherical coordinates:
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pagat _ and Fey rules for fermion intlerwbiona. a . 1 Fig. 8.2. Feynman rules for boson interactions.
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C.1 Feynman Rules — General Discussion

?Xt particl::‘sl?nest;:le initial or final state one writes the following factor:
or
(2) Spin gero Bogon. e i o). - L
= i Boson ----------- " . .. ) or
GEr > ) %pelrt € l?f\) is the polarization 4-vector for a boson th;]; hehc::;}e' e
fotems - the ca:e of a massless spin one boson propagating along
with 4-momentum ky given by :
| kn - -
e ~ (c1))
p=l ol =
ks
with ko = |ks|, the polarization 4-vectors are given by
0
LI c12)
A ==x1)= 2 la] - (
- ' 0
~for ‘helicity +1. The polarization 4-vectors satisfy
: ke=0, (C.1.9)
and e=-1 (C1.4)

. I ; -1.1 b“t-
Eﬂr a massil 4— tum glv by (c )
Wlt\h kn = ka + Mz one a].so ]]83 the 10ngltudmal ﬂta-te

ks o
: LR " (C.15)
EF(A — 0) = 'ﬁ 0 H | (
! ko
. i _ -
' “wheére M is the boson mass. - .
1 d spin s
in 1/2 fermion of momentum p an
Qe '_) ) ?xfl;xtl,al state ......... u(p, 5) on the right -
in final state ........... ii(p, 8) on the left oin s
(d) Spin 1/2 antifermion of momentum p and sp
GV in initial state ......... %(p, ) on the l?ft
in final state ........... v(p, 5) on the right

al Li Propagators): o .
IEI;t.ciniln:lerI;:&ﬁnEa desl::ibes a particle of momentum ¢ az_1& mass m. Some
examples are as follows: (5 5 b)

| QEV—) (b) eey vertex

C.2 Loop Integrations 339

(2) Spin Zero Boson :
i

@ —m?tic : (C-1.8)
@Eb =  (b) Photon (Feynman Gauge)
| Ak ~ (cay)

(<) Spin One Boson . :
—i (9w — gugv/m?)

| - s (C.18)
‘ 7! (d) Spin 1/2 fermion . I
i Qeo . ; i) s
P s ©a.9)

For antifermions one uses the same propagator, treating the an-
tifermion as a fermion of opposite 4-momentum (i.e., —q).

Vertex Factors:
For each intersection of three .

factor which depends on the structure of the interaction Lagrangian. Some
examples are shown in Fig. C.1. .

(a) Three scalar boson vertex
—ig : (C.1.10)

—iey, }"“ (C.1.11)

Here ¢ is the charge of the electron and the fine structure constant

o = e?/(4r).
(c) Charged spin zero boson-photon vertex
~iQ(p1 + p2)y. - (C112)
- (d) Four point mnpﬁng for charged spin zero boson-photon
2iQ%,, (C.1.13)

Loops and Combinatorics:

(a) For each loop with undetermiried momentum k ........ fd%/(2m)*

Here, the integral runs over all values of the momentum. 2
(b) For each closed fermion loop ............

|

(c) For each closed loop containing n identical bosons ...... 1/n!

(br_more) lines at one point there is a vertex

-86%-
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