Quantum field theory - I, fall 2013, 2. Exam 13.12.2013

Exam lasts 4 hours. Problems are given only in English, but you can give your answers
in Finnish.

Note that a large number of equations and definitions are given in the appendix.
All these results can be freely used without derivation.

It is unlikely that you can finish all problems and renormalization will be applied to the final
score. Hence: leave room only under two conditions: 1) you have produced a complete
paper or 2) the bell rings.

la. (2p) Explain shortly the following:

e What is content of renormalization procedure from the point of view of the bare and
observable parameters of the theory.

e Why is gauge fixing needed and how does that affect gauge field propagator.

e What is a Faddeev-Popov ghost?

1b. (2p) Show by a direct application of LSZ-relations (see appendix) that a counterterm
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gives rise to a Feynman rule.
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2. (4p) Consider an interaction of the form
Ling = g¢&w

where ¢ is a real scalar and ¢ a fermion field. Compute the superficial degree of divergence
D for the 3-point function (with one external scalar and two external fermion lines) in this
theory. Show that this function is renormalizable precisely when the mass dimension of g is
zero. (That is, show that if d > 0 the degree of divergence of the generic graph contributing
to this function grows as a function of number of internal loops.)

3. (4p) Compute the path integral
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when A is a symmetric n x n-matrix and 6;, 6;, n; and 7; are independent Grassmann-valued
variables.



4. (4p) W-boson couples to fermions through a chiral interaction
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Compute the decay width of the WW-boson (averaged over polarization) into an arbitrary
fermion pair ff where f has a mass m¢. You will need the massive gauge-boson polarization
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5. (8p) Consider a theory
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in d = 3 dimensions. Justify the form of the counter term Lagrangian:
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where
o Zo=1i = Zgmd 6y~ M(Z, ~1),

There are of course many more counterterms in this theory, but you need to concentrate
only on those indicated above.

e Derive the mass dimensions of the fields ¢ and s in d = 3 — € dimensions.

e Rewrite the Lagrangian using new parameters \;c = pu®); and g = p’g;, with o and
B chosen such that A\; and g, keep their dimensions fixed to their d = 3 values.

e Use the new couplings to define your Feynman rules for the theory.

e Draw diagrammatic expansions for the 2-point function for ¢-field to first order in
couplings \; and g¢; and for the 4-point function to first order in couplings g;.

e Compute these diagrams and regularize them using dimensional regularization.

e Compute the counter terms dy, 0, and 0, from the renormalization conditions for
the propagator and the 4-point function at p = 0:
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Collection of useful (and not so useful) equations

e Free Klein-Gordon theory for real (¢) and complex () scalar fields:
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e Free Dirac theory
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e Equation of motion, Hamilton, etc
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e Field operators and commutation rules:
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In each of these cases an equal momentum commutator is to be understood as [ap, dL]

2E,V, where V' is the volume of the space. Similar reasoning holds for anticommutators
and antiparticle operators.



Feynman propagators
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Contractions
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Pauli matrices

Clifford algebra
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Weyl representation for gamma matrices
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Trace-identities
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Spinor identities
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Mandelstam variables for 12 — 34 scattering:

s = (p1 + p2)?, t = (p1 —p3)?, u= (p1 — ps)°.

s+t+u=mi+ms+mi+m;



e [LSZ-reduction formula for real scalar fields
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e Differential cross section for 2 — 2 process
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where \(z,y,2) = (x —y — 2)* — 4yz and S = 1 for nonidentical and S = 1/2 for

identical particles in the final state.

e Decay width for 1 — 2 process
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e Beta-function representation in terms of I’
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e d-dimensional solid angle
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e [-function properties and expansions (rem: I'(z + 1) = zI'(2))
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e Feynmanin parametrization
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