Exam lasts 4 hours. Problems are given only in English, but you can of course write your answers in Finnish.
Note that a large number of equations and definitions are given in the appendix. These results can be used freely without a derivation.

1. Give brief answers and explanations to the following:

- Sketch (perhaps diagrammatically) the steps that are necessary for establishing a connection between QFT calculable quantities and the physical observables (count rates) in scattering experiments.
- Explain what are the vacuum diagrams, how do they arise in the QFT perturabation theory and what is their physical meaning. Give examples in $\lambda \phi^{4}$-theory.
- What are connected diagrams and 1PI-diagrams. Give examples in $\lambda \phi^{4}$-theory. What is the role of each type of diagrams in the perturbation expansions for physical processes?

2. Consider free, complex Klein-Gordon scalar field. Prove that the current

$$
j^{\mu} \equiv i\left(\phi^{*} \partial^{\mu} \phi-\phi \partial^{\mu} \phi^{*}\right)
$$

is conserved, and derive then a representation for the conserved charge

$$
\hat{Q}=q \int d^{3} x: j^{0}:
$$

in terms of creation and annihilation operators. Here : $j^{0}$ : means that $j^{0}$ is in normal order.
Let then $|\Phi\rangle$ be an eigenstate of the operator $\hat{Q}$ with an eigenvalue $Q$, i.e $\hat{Q}|\Phi\rangle=Q|\Phi\rangle$. Show that the creation operator $a^{\dagger}$ raises the charge of the state $|\Phi\rangle$ by $q$, and that $b^{\dagger}$ lowers the charge by $q$. Interpret the operator $\hat{Q}$ physically.
3. a) Compute the dimensions of the fields $\phi, \psi$ and $A_{\mu}$ (spin- $0,-1 / 2$ and 1 fields) when the space-time has a dimension $D$. (One time and $D-1$ space dimensions, such that in the action $\int \mathrm{d}^{4} x \rightarrow \int \mathrm{~d}^{D} x$.) Show that the coupling constants related to operators $\bar{\psi} A \psi$, $\phi(\partial \phi) A, \phi^{2} A^{2}, A^{2}(\partial A) A^{4}$ are dimensionless only when $D=4$.
b) Find out what the dimension of the space-time should be so that the theory

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{g}{3!} \phi^{3}
$$

would be renormalizable. Show that the energy spectrum of the theory is not bounded from below. Hint: compute the Hamiltonian and consider the lowest energy state with a constant $\phi$.
4. Consider the Yukawa theory:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m_{\phi}^{2}}{2} \phi^{2}+\bar{\psi}\left(i \not \partial-m_{\psi}\right) \psi-g \bar{\psi} \phi \psi .
$$

The LSZ reduction formula for the decay amplitude $\phi(k) \rightarrow \psi\left(p_{1}\right) \bar{\psi}\left(p_{2}\right)$ is

$$
\begin{array}{r}
\underset{\text { out }}{\infty}\left\langle p_{1}, p_{2} \mid k\right\rangle_{\text {in }}^{-\infty}=\int \mathrm{d}^{4} x \mathrm{~d}^{4} y_{1} \mathrm{~d}^{4} y_{2}\left[e^{-i k \cdot x}\left(\partial_{x}^{2}+m_{\phi}^{2}\right)\right]\left[\bar{u}\left(p_{1}\right) e^{i p_{1} \cdot y_{1}}\left(i \boldsymbol{y}_{y_{1}}-m_{\psi}\right)\right] \times \\
\times\langle 0| T\left(\hat{\psi}\left(y_{1}\right) \hat{\bar{\psi}}\left(y_{2}\right) \hat{\phi}(x)\right)|0\rangle\left[\left(i \overleftarrow{\ddot{\phi}_{y_{2}}}+m_{\psi}\right) v\left(p_{2}\right) e^{i p_{2} \cdot y_{2}}\right]
\end{array}
$$

Write down the perturbation expansion formula for the interacting theory Greens function appearing in the integral, and compute the LSZ-amplitude to the lowest nontrivial order in the perturbation theory in the Yukawa theory. Draw the corresponding Feynman diagram.
5. Consider a theory described by the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m_{\phi}^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}+\sum_{c}\left[\bar{\psi}_{c}\left(i \not \partial-m_{c}\right) \psi_{c}-g \bar{\psi}_{c} \gamma^{5} \phi \psi_{c}\right] .
$$

where $\psi_{c}$ with $c=a, b, \ldots$ are some fermionic fields.

## Part a)

i) Extract the Feynman rules for this theory. ii) Draw the Feynman diagram(s) to order $g^{2}$ for the annihilation process $a \bar{a} \rightarrow b \bar{b}$ in this theory and write down the corresponding $T$ matrix element(s) using your Feynman rules. iii) Compute the square of the spin-averaged matrix element and finally the total spin-averaged cross section $\sigma(s)$ for the process. (Check equation collection for useful formulae.)

## Part b)

Draw all diagrams to order $g^{2}$ and $\lambda g^{2}$ for the scattering $a \bar{a} \rightarrow \phi \phi$ and compute the symmetry factor for each diagram.

- Free Klein-Gordon theory (real $(\phi)$ and complex $(\varphi)$ scalar fields)

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}, \quad \mathcal{L}=\left|\partial_{\mu} \varphi\right|^{2}-m^{2}|\varphi|^{2} .
$$

- Free Dirac theory

$$
\mathcal{L}_{\text {Dirac }}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi \quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0 \quad-i \partial_{\mu} \bar{\Psi} \gamma^{\mu}-m \bar{\Psi}=0
$$

- Equation of motion, Hamilton, etc

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \phi}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}=0 \quad \pi_{\phi}=\frac{\partial \mathcal{L}}{\partial \dot{\phi}} \quad H=\int d^{3} x\left[\pi_{\phi} \dot{\phi}-\mathcal{L}\right] \\
& \frac{\partial \mathcal{L}}{\partial \psi}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)}=0 \quad \pi_{\psi}=\frac{\partial \mathcal{L}}{\partial \dot{\psi}} \quad H=\int d^{3} x\left[\pi_{\psi} \dot{\psi}-\mathcal{L}\right] \\
& \Delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \psi} \Delta \psi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \partial_{\mu} \Delta \psi
\end{aligned}
$$

- Real scalar field ( $\phi$ )

$$
\begin{gathered}
\phi(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}}\left(a_{\mathbf{p}} e^{-i p \cdot x}+a_{\mathbf{p}}^{\dagger} e^{i p \cdot x}\right) \\
{\left[a_{\mathbf{p}}, a_{\mathbf{p}^{\prime}}^{\dagger}\right]=2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \quad\left[a_{\mathbf{p}}, a_{\mathbf{p}^{\prime}}\right]=\left[a_{\mathbf{p}}^{\dagger}, a_{\mathbf{p}^{\prime}}^{\dagger}\right]=0 .}
\end{gathered}
$$

- Complex scalar field ( $\varphi$ )

$$
\begin{aligned}
\varphi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}}\left(a_{\mathbf{p}} e^{-i p \cdot x}+b_{\mathbf{p}}^{\dagger} \mathbf{p}^{i p \cdot x}\right) \\
{\left[a_{\mathbf{p}}, a_{\mathbf{p}^{\prime}}^{\dagger}\right] } & =\left[b_{\mathbf{p}}, b_{\mathbf{p}^{\prime}}^{\dagger}\right]=2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{aligned}
$$

- Dirac field

$$
\begin{aligned}
& \psi(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}} \sum_{s}\left(a_{\mathbf{p}}^{s} u_{\mathbf{p}}^{s} e^{-i p \cdot x}+b_{\mathbf{p}}^{s \dagger} v_{\mathbf{p}}^{s} \mathbf{e}^{i p \cdot x}\right) \\
& \left\{a_{\mathbf{p}}^{s}, a_{\mathbf{p}^{\prime}}^{s^{\prime}}\right\}=\left\{b_{\mathbf{p}}^{s}, b_{\mathbf{p}^{\prime}}^{s^{\prime} \dagger}\right\}=2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \delta_{s, s^{\prime}}
\end{aligned}
$$

- Feynman propagators

$$
\begin{aligned}
D_{F}(x-y) & =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon} e^{-i p \cdot(x-y)} \\
S_{F}(x-y) & =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i(\not p+m)}{p^{2}-m^{2}+i \epsilon} e^{-i p \cdot(x-y)}
\end{aligned}
$$

- Contractions

$$
\hat{\phi}(x) \hat{\phi}(y)=D_{F}(x-y) \quad \text { and } \quad \hat{\psi}(x) \hat{\bar{\psi}}(y)=S_{F}(x-y)
$$

- Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \text { and } \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

- Clifford algebra

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu}
$$

- Weyl representation for gamma matrices

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right), \quad i=1,2,3
$$

- $\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$.
- Trace-identities

$$
\begin{aligned}
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right] & =4 g^{\mu \nu} \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right] & =4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right) \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right] & =-4 i \epsilon^{\mu \nu \rho \sigma}
\end{aligned}
$$

- Spinor identities

$$
\begin{gathered}
\sum_{s} u_{\mathbf{p}}^{s} \bar{u}_{\mathrm{p}}^{s}=\not p+m \quad \sum_{s} v_{\mathbf{p}}^{s} \bar{v}_{\mathbf{p}}^{s}=\not p-m \\
\bar{u}_{\mathbf{p}}^{s} u_{\mathbf{p}}^{s^{\prime}}=2 m \delta_{s s^{\prime}} \quad \bar{v}_{\mathbf{p}}^{s} v_{\mathbf{p}}^{s^{\prime}}=-2 m \delta_{s s^{\prime}} \quad \bar{u}_{\mathbf{p}}^{s} v_{\mathbf{p}}^{s^{\prime}}=0
\end{gathered}
$$

- Mandelstam variables for $12 \rightarrow 34$ scattering:

$$
\begin{gathered}
s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}, \quad u=\left(p_{1}-p_{4}\right)^{2} . \\
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}
\end{gathered}
$$

- Differential cross sections :

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega_{\mathrm{CM}}}=\frac{|T|^{2}}{64 \pi^{2} s} \frac{\lambda^{1 / 2}\left(s, m_{3}^{2}, m_{4}^{2}\right)}{\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}, \quad \frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\frac{|T|^{2}}{16 \pi \lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)},
$$

where $\lambda(x, y, z) \equiv(x-y-z)^{2}-4 y z$.

