Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading to the answer. You may use any approximation in a calculation, provided you can explain why you use it and provided it does not alter the final result substantially. If you computed a result in two different ways which contradict each other, cross one out otherwise none can be graded (to avoid guesswork).

Allowed tools: Pocket calculator, standard collections of mathematical and physical formulae.

Table 1: 45 points over 20 questions. Minimum to pass this test is 30 points. Two additional questions 2 e and 6 a are for extra 3 points each.

1 a	1 b	1 c	1 d	2 a	2 b	2 c	2 d	2 e	3 a	3 b	3 d
1	2	2	2	3	2	2	2	$\mathbf{3}$	2	3	2
4 a	4 b	4 c	4 d	5 a	5 b	5 c	5 d	5 e	6 a		
2	2	3	3	3	2	3	2	2	$\mathbf{3}$		

1. LHC accelerator

The LHC ring of $26,659 \mathrm{~m}$ circumference accelerates proton to a 4 TeV energy at bunch collision rate of 40 MHz . This means that protons are grouped in 3564 bunches per orbit with 1.2×10^{11} protons/bunch. However, in reality only 2808 bunches are used (safety reasons). The beam parameters like emittance (transverse size) and β^{*} parameter (longitudinal size) determine the average interaction probability, $\mu=P\left(n_{\mathrm{p}+\mathrm{p} \text { coll }}>0\right)$, per one bunch crossing. For the bunch intensity $N_{b}=1.2 \times 10^{11} \mathrm{p} / \mathrm{bunch}$ the measured interaction rate is $\mu=0.06$ interactions/bunch.
(a) What is the velocity of 1 tone vehicle having the same kinetic energy of all protons orbiting in LHC?
(b) Calculate the trigger rate (assume 100% trigger efficiency) for $\mu=6 \%$ and the 75 ns bunch crossing gap filling scheme.
(c) What is the fraction of pileup events (pileup means more than one proton-proton collision within one bunch crossing) in the triggered event sample with the 75 ns gap filling scheme?
(d) What is the beam rapidity?

2. Particle kinematics

Investigate the rapidity density distribution of emitted protons of transverse momentum $p_{T}=1 \mathrm{GeV} / \mathrm{c}$ and $\pi^{0}\left(m_{\pi 0}=134 \mathrm{MeV} / c^{2}\right)$ decay.
(a) The rapidity density distribution of $1 \mathrm{GeV} / c$ transverse momentum protons at midrapidity $d N_{\text {proton }} /\left.d y\right|_{y=0}=1$. What is the corresponding value of the pseudorapity density $d N_{\text {proton }} /\left.d \eta\right|_{\eta=0}$?
(b) Sketch the $d N_{\text {proton }} / d y$ and $d N_{\text {proton }} / d \eta$ in the case of $\sqrt{s_{\mathrm{LHC}}}=8 \mathrm{TeV}$ proton-proton collisions.
(c) Calculate the c.m. energy $\sqrt{s_{\mathrm{SPS}}}$ of the SPS fixed-target experiment with $E_{\mathrm{SPS}, \text { beam }}$ $=450 \mathrm{GeV} / c$. Sketch the net-baryon rapidity density $d N_{\mathrm{p}-\overline{\mathrm{p}}} / d y$ in the case of $\sqrt{s_{\mathrm{LHC}}}$ and $\sqrt{s_{\mathrm{SPS}}}$.
(d) Consider $\pi^{0} \rightarrow 2 \gamma$ decay. Let θ^{*} be angle between z-axis and momentum of the photon in the π^{0} rest frame (see left Fig. 1). Let us denote $E_{ \pm}^{*}, E_{ \pm}$photons energies in the rest and lab frame respectively and define asymmetry parameter

$$
\begin{equation*}
\alpha=\left|\frac{E_{+}-E_{-}}{E_{+}+E_{-}}\right| \tag{1}
\end{equation*}
$$

Calculate decay photon energies $\left(E_{ \pm}\right)$in the Lab frame and show that the angle θ between photon and π^{0} momentum is

$$
\cos \theta=\frac{\cos \theta^{*}+\beta}{1+\beta \cos \theta^{*}},
$$

where β is the velocity of π^{0}.
(e) Calculate the opening angle, $\Delta \phi$, distribution for π^{0} of energy E_{π} decaying to the photon pairs of asymmetry α.

Rest Frame

Lab Frame

Figure 1: $\pi^{0} \rightarrow 2 \gamma$ in the π^{0} rest frame (left) and in the Lab frame (right).

3. Elliptic flow

The azimuthal distribution of particles emerging from the non-central A-A collision can be expressed using the Fourier expansion

$$
\begin{equation*}
E \frac{d^{3} N}{d p^{3}}=\frac{1}{2 \pi} \frac{d^{2} N}{p_{T} d p_{T} d y}\left[1+\sum_{n=1}^{\infty} 2 v_{n}\left(p_{T}\right) \cos n\left(\varphi-\psi_{n}\right)\right] \tag{2}
\end{equation*}
$$

where ψ_{n} represents the reaction plane angle and $v_{n}\left(p_{T}\right)$ are the Fourier coefficients characterizing the particle production anisotropy in the momentum space. Consider the case when all $v_{n}=0$ except v_{2}. Then (2) reduces to

$$
\begin{equation*}
\frac{d N}{d \phi}=C \cdot\left[1+2 v_{2} \cos 2\left(\varphi-\psi_{2}\right)\right] \tag{3}
\end{equation*}
$$

where C is the normalization constant.
(a) How would you extract the v_{2} coefficient from the data (follows eq. (3))?
(b) Assume you have measured the two-particle $\Delta \phi=\phi_{i}-\phi_{j}$ distribution $d N_{2} / d \Delta \phi$ where the only source of correlation is the $v_{2}>0$ as above. How would you write the pair double differential distribution $d N_{2} / d \Delta \phi$ as a function of $\Delta \phi$ angle? How would you extract the v_{2} coefficient in this case?
(c) Assume the only particles you detect are the decay photons $\pi^{0} \rightarrow 2 \gamma$ and you know the second Fourier coefficient $v_{2}^{\pi 0}$ of π^{0} production. What do you expect for the measured anisotropy of decay photons v_{2}^{γ} ? Should be the v_{2}^{γ} value (i) larger $\left(v_{2}^{\gamma}>v_{2}^{\pi 0}\right)$ or (ii) smaller $\left(v_{2}^{\gamma}<v_{2}^{\pi 0}\right)$? Explain your choice.

4. Hydrodynamical expansion

Consider two systems, each at initial time $\tau_{0}=1 \mathrm{fm}$ in a cylindrical volume of radius $R_{0}=6 \mathrm{fm}$ and extending from $\eta=-1$ to $\eta=+1$ in spacetime rapidity. The single species of particles in the system is massless, the momentum k distribution isotropic and the distribution function is $f_{B}\left(E_{k}\right)=\exp \left[-E_{k} / T_{0}\right]$ where $E_{k}=|k|$ and $T_{0}=300 \mathrm{MeV}$.
(a) Compute the initial rapidity distribution $d N / d y$ of particles!
(b) In one of the systems the particles do not interact, in the other they form a thermodynamical system with an equation of state $\epsilon=3 p$. Both systems expand in longitudinal direction only with the speed of light, i.e. the volume V is proportional to proper time τ; the thermal system shows scaling flow $y=\eta$.
How does the energy density ϵ in each of the systems evolve as a function of proper time τ ? Explain the difference!
(c) At time $\tau=10 \mathrm{fm}$, consider only particles in a small interval $d \eta$ around midrapidity $\eta=0$. What is the rapidity distribution $d N / d y$ of particles from this subvolume for each of the two systems now?
(d) The dilepton emission rate in the thermal system is given by

$$
\frac{d N}{d t d^{3} \mathbf{x} d E d^{3} \mathbf{p}}=-\frac{1}{12 \pi^{4}} \frac{\alpha}{M^{2}} \frac{1}{\exp (E / T)-1} \operatorname{Im}\left[\Pi^{\mathrm{ret}}{ }_{\mu}{ }^{\mu}(E, \mathbf{p})\right]
$$

Assuming you can neglect $\operatorname{Im}\left[\Pi^{\text {ret }}{ }_{\mu}{ }^{\mu}(E, \mathbf{p})\right]$ (i.e. set it to 1), determine the relative strength of dilepton emission at the ρ peak $(M=770 \mathrm{MeV})$ for low $P_{T}=100 \mathrm{MeV}$ and high $P_{T}=1 \mathrm{GeV}$ at $\tau=1 \mathrm{fm}$ and $\tau=10 \mathrm{fm}$.
Give an interpretation of the result. Name at least one effect not considered in this estimate.

5. Energy loss and nuclear suppression factor

Consider a cylindrical volume of radius $R=5 \mathrm{fm}$ is homogeneously filled with a free ideal gluon gas of $T=500 \mathrm{MeV}$. A gluon starts from the center and crosses the volume. The gluon is on an eikonal trajectory at midrapidity. Its mean free path is 0.5 fm .
(a) Estimate the scattering cross section for the gluon from the given information!
(b) By what approximate factor would the mean free path of a quark be different and why?
(c) Assume that the pQCD parton production spectrum follows a power law $d N / d p_{T} \sim$ $1 / p_{T}^{5}$ and consider final state gluons at 10 GeV after the medium. Assume further that the gluon loses a given fraction z of its energy in each scattering. What is z if the observed nuclear suppression factor $R_{A A}(10 \mathrm{GeV})=0.3$?
(d) A real system is not a static cylinder. Assume $T=500 \mathrm{MeV}$ holds at $\tau=1 \mathrm{fm}$ and the system expands in a Bjorken hydrodynamical evolution. How does this change the estimate for the average energy fraction lost per scattering?
(e) Explain the role of coherence in a more realistic picture and argue why this leads to an energy loss proportional to L^{2} where L is the medium length.
(f) (difficult) Assume parton production points in the transverse plane are distributed by with a probability density $P(r) \sim \exp \left[-\frac{r^{2}}{(R / 2)^{2}}\right]$ and no partons are produced outside the medium. How would you estimate the radius r_{0} at which most of the observed gluons at 10 GeV are produced? (Hint: You do not need to solve the resulting expression for a number. It is helpful to consider only gluons propagating radially outward - but explain why!)

6. Hadronic Thermodynamics

Before Quantum Chromodynamics (QCD) was established as the theory of strong interactions, it was conjectured that there is a limiting temperature for any hot hadronic system, the so-called Hagedorn temperature. Explain the physics behind this idea, especially how there can be a 'highest possible' temperature, and explain how QCD changed the picture.

Supplementary

- $\mathrm{eV} \approx 1.602 \times 10^{-19} \mathrm{~J}$.
- Poisson distribution

$$
P(n)=\frac{\lambda^{n}}{n!} e^{-\lambda}
$$

- Lorentz Transformation

$$
\left(\begin{array}{c}
E \tag{5}\\
p_{T} \\
p_{\|}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & 0 & -\eta \\
0 & 1 & 0 \\
-\eta & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
E^{*} \\
p_{T}^{*} \\
p_{\|}^{*}
\end{array}\right)
$$

where $\eta=\gamma \beta$.

- Rapidity

$$
\begin{gathered}
y=\ln \left(\frac{E+p_{\|}}{m_{T}}\right)=\frac{1}{2} \ln \left(\frac{E+p_{\|}}{E-p_{\|}}\right) \\
E=m_{T} \cosh y \quad p_{\|}=m_{T} \sinh y
\end{gathered}
$$

- Pseudorapidity: In the limit $\beta \rightarrow 1$, rapidity $y \rightarrow$ pseudorapidity η

$$
\begin{gathered}
\eta=\frac{1}{2} \ln \left(\frac{1+\cos \theta}{1-\cos \theta}\right)=\frac{1}{2} \ln \left(\frac{p+p_{L}}{p-p_{L}}\right)=-\ln \tan \frac{\theta}{2} \\
p=p_{T} \cosh \eta \quad p_{L}=p_{T} \sinh \eta
\end{gathered}
$$

- Trigonometry: $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$.
- Integrals

$$
\begin{gathered}
K_{n}(z)=\int_{0}^{\infty} e^{-z \cosh t} \cosh (n t) d t \approx \sqrt{\frac{\pi}{2 z}} e^{-z}(1+\ldots) \\
I_{0}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{z \cos \phi} d \phi \\
\int x^{2} e^{a x} d x=e^{a x}\left(\frac{x^{2}}{a}-\frac{2 x}{a^{2}}+\frac{2}{a^{3}}\right) \\
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{\Gamma(n+1)}{a^{n+1}} \text { for } a>0, n>-1
\end{gathered}
$$

