Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Final Exam Jan Rak and Thorsten Renk

Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading to the answer. You may use any approximation in a calculation, provided you can explain why you use it and provided it does not alter the final result substantially. If you computed a result in two different ways which contradict each other, cross one out — otherwise none can be graded (to avoid guesswork).

Allowed tools: Pocket calculator, standard collections of mathematical and physical formulae.

Table 1: 45 points over 20 questions. Minimum to pass this test is 30 points. Two additional questions 2e and 6a are for extra 3 points each.

1a	1b	1c	1d	2a	2b	2c	2d	2e	3a	3b	3d
1	2	2	2	3	2	2	2	3	2	3	2
4a	4b	4c	4d	5a	5b	5c	5d	5e	6a		
2	2	3	3	3	2	3	2	2	3		

1. LHC accelerator

The LHC ring of 26,659 m circumference accelerates proton to a 4 TeV energy at bunch collision rate of 40 MHz. This means that protons are grouped in 3564 bunches per orbit with 1.2×10^{11} protons/bunch. However, in reality only 2808 bunches are used (safety reasons). The beam parameters like emittance (transverse size) and β^* parameter (longitudinal size) determine the average interaction probability, $\mu = P(n_{p+p \text{ coll}} > 0)$, per one bunch crossing. For the bunch intensity $N_b = 1.2 \times 10^{11}$ p/bunch the measured interaction rate is μ =0.06 interactions/bunch.

- (a) What is the velocity of 1 tone vehicle having the same kinetic energy of all protons orbiting in LHC?
- (b) Calculate the trigger rate (assume 100% trigger efficiency) for $\mu=6\%$ and the 75ns bunch crossing gap filling scheme.
- (c) What is the fraction of pileup events (pileup means more than one proton–proton collision within one bunch crossing) in the triggered event sample with the 75ns gap filling scheme?
- (d) What is the beam rapidity?

2. Particle kinematics

Investigate the rapidity density distribution of emitted protons of transverse momentum $p_T=1 \text{ GeV/c}$ and $\pi^0 (m_{\pi 0} = 134 \text{ MeV/}c^2)$ decay.

- (a) The rapidity density distribution of 1 GeV/c transverse momentum protons at midrapidity $dN_{\text{proton}}/dy|_{y=0}=1$. What is the corresponding value of the pseudorapity density $dN_{\text{proton}}/d\eta|_{\eta=0}$?
- (b) Sketch the $dN_{\rm proton}/dy$ and $dN_{\rm proton}/d\eta$ in the case of $\sqrt{s_{\rm LHC}}=8$ TeV proton-proton collisions.
- (c) Calculate the c.m. energy $\sqrt{s_{\text{SPS}}}$ of the SPS fixed-target experiment with $E_{\text{SPS,beam}} = 450 \text{ GeV}/c$. Sketch the net-baryon rapidity density $dN_{\text{p}-\bar{\text{p}}}/dy$ in the case of $\sqrt{s_{\text{LHC}}}$ and $\sqrt{s_{\text{SPS}}}$.
- (d) Consider $\pi^0 \to 2\gamma$ decay. Let θ^* be angle between z-axis and momentum of the photon in the π^0 rest frame (see left Fig. 1). Let us denote E_{\pm}^* , E_{\pm} photons energies in the rest and lab frame respectively and define asymmetry parameter

$$\alpha = \left| \frac{E_+ - E_-}{E_+ + E_-} \right| \tag{1}$$

Calculate decay photon energies (E_{\pm}) in the Lab frame and show that the angle θ between photon and π^0 momentum is

$$\cos\theta = \frac{\cos\theta^* + \beta}{1 + \beta\cos\theta^*} \,,$$

Page 2

where β is the velocity of π^0 .

(e) Calculate the opening angle, $\Delta \phi$, distribution for π^0 of energy E_{π} decaying to the photon pairs of asymmetry α .

Figure 1: $\pi^0 \to 2\gamma$ in the π^0 rest frame (left) and in the Lab frame (right).

3. Elliptic flow

The azimuthal distribution of particles emerging from the non-central A–A collision can be expressed using the Fourier expansion

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left[1 + \sum_{n=1}^{\infty} 2v_{n}(p_{T})\cos n(\varphi - \psi_{n}) \right]$$
(2)

where ψ_n represents the reaction plane angle and $v_n(p_T)$ are the Fourier coefficients characterizing the particle production anisotropy in the momentum space. Consider the case when all $v_n = 0$ except v_2 . Then (2) reduces to

$$\frac{dN}{d\phi} = C \cdot \left[1 + 2v_2 \cos 2(\varphi - \psi_2)\right] \tag{3}$$

where C is the normalization constant.

- (a) How would you extract the v_2 coefficient from the data (follows eq. (3))?
- (b) Assume you have measured the two-particle $\Delta \phi = \phi_i \phi_j$ distribution $dN_2/d\Delta \phi$ where the only source of correlation is the $v_2 > 0$ as above. How would you write the pair double differential distribution $dN_2/d\Delta \phi$ as a function of $\Delta \phi$ angle? How would you extract the v_2 coefficient in this case?
- (c) Assume the only particles you detect are the decay photons $\pi^0 \to 2\gamma$ and you know the second Fourier coefficient $v_2^{\pi 0}$ of π^0 production. What do you expect for the measured anisotropy of decay photons v_2^{γ} ? Should be the v_2^{γ} value (i) larger $(v_2^{\gamma} > v_2^{\pi 0})$ or (ii) smaller $(v_2^{\gamma} < v_2^{\pi 0})$? Explain your choice.

4. Hydrodynamical expansion

Consider two systems, each at initial time $\tau_0 = 1$ fm in a cylindrical volume of radius $R_0 = 6$ fm and extending from $\eta = -1$ to $\eta = +1$ in spacetime rapidity. The single species of particles in the system is massless, the momentum k distribution isotropic and the distribution function is $f_B(E_k) = \exp[-E_k/T_0]$ where $E_k = |k|$ and $T_0 = 300$ MeV.

- (a) Compute the initial rapidity distribution dN/dy of particles!
- (b) In one of the systems the particles do not interact, in the other they form a thermodynamical system with an equation of state $\epsilon = 3p$. Both systems expand in longitudinal direction only with the speed of light, i.e. the volume V is proportional to proper time τ ; the thermal system shows scaling flow $y = \eta$. How does the energy density ϵ in each of the systems evolve as a function of proper
- time τ ? Explain the difference! (c) At time $\tau = 10$ fm, consider only particles in a small interval $d\eta$ around midrapidity n = 0. What is the rapidity distribution $dN/d\eta$ of particles from this subvolume
- $\eta = 0$. What is the rapidity distribution dN/dy of particles from this subvolume for each of the two systems now?
- (d) The dilepton emission rate in the thermal system is given by

$$\frac{dN}{dtd^3\mathbf{x}dEd^3\mathbf{p}} = -\frac{1}{12\pi^4}\frac{\alpha}{M^2}\frac{1}{\exp(E/T) - 1}\mathrm{Im}[\Pi^{\mathrm{ret}}{}_{\mu}{}^{\mu}(E,\mathbf{p})],$$

Assuming you can neglect $\text{Im}[\Pi^{\text{ret}}_{\mu}{}^{\mu}(E, \mathbf{p})]$ (i.e. set it to 1), determine the relative strength of dilepton emission at the ρ peak (M = 770 MeV) for low $P_T = 100 \text{ MeV}$ and high $P_T = 1 \text{ GeV}$ at $\tau = 1 \text{ fm}$ and $\tau = 10 \text{ fm}$.

Give an interpretation of the result. Name at least one effect not considered in this estimate.

5. Energy loss and nuclear suppression factor

Consider a cylindrical volume of radius R = 5 fm is homogeneously filled with a free ideal gluon gas of T = 500 MeV. A gluon starts from the center and crosses the volume. The gluon is on an eikonal trajectory at midrapidity. Its mean free path is 0.5 fm.

- (a) Estimate the scattering cross section for the gluon from the given information!
- (b) By what approximate factor would the mean free path of a quark be different and why?
- (c) Assume that the pQCD parton production spectrum follows a power law $dN/dp_T \sim 1/p_T^5$ and consider final state gluons at 10 GeV after the medium. Assume further that the gluon loses a given fraction z of its energy in each scattering. What is z if the observed nuclear suppression factor $R_{AA}(10 \text{ GeV}) = 0.3$?

- (d) A real system is not a static cylinder. Assume T = 500 MeV holds at $\tau = 1$ fm and the system expands in a Bjorken hydrodynamical evolution. How does this change the estimate for the average energy fraction lost per scattering?
- (e) Explain the role of coherence in a more realistic picture and argue why this leads to an energy loss proportional to L^2 where L is the medium length.
- (f) (difficult) Assume parton production points in the transverse plane are distributed by with a probability density $P(r) \sim \exp[-\frac{r^2}{(R/2)^2}]$ and no partons are produced outside the medium. How would you estimate the radius r_0 at which most of the observed gluons at 10 GeV are produced? (Hint: You do not need to solve the resulting expression for a number. It is helpful to consider only gluons propagating radially outward - but explain why!)

6. Hadronic Thermodynamics

Before Quantum Chromodynamics (QCD) was established as the theory of strong interactions, it was conjectured that there is a limiting temperature for any hot hadronic system, the so-called Hagedorn temperature. Explain the physics behind this idea, especially how there can be a 'highest possible' temperature, and explain how QCD changed the picture.

Supplementary

- eV $\approx 1.602 \times 10^{-19}$ J.
- Poisson distribution

$$P(n) = \frac{\lambda^n}{n!} e^{-\lambda}$$

• Lorentz Transformation

$$\begin{pmatrix} E\\ p_T\\ p_{||} \end{pmatrix} = \begin{pmatrix} \gamma & 0 & -\eta\\ 0 & 1 & 0\\ -\eta & 0 & \gamma \end{pmatrix} \begin{pmatrix} E^*\\ p_T^*\\ p_{||}^* \end{pmatrix}$$
(5)

where $\eta = \gamma \beta$.

• Rapidity

$$y = \ln\left(\frac{E+p_{||}}{m_T}\right) = \frac{1}{2}\ln\left(\frac{E+p_{||}}{E-p_{||}}\right)$$
$$E = m_T \cosh y \qquad p_{||} = m_T \sinh y$$

• Pseudorapidity: In the limit $\beta \rightarrow 1,$ rapidity $y \rightarrow$ pseudorapidity η

$$\eta = \frac{1}{2} \ln \left(\frac{1 + \cos \theta}{1 - \cos \theta} \right) = \frac{1}{2} \ln \left(\frac{p + p_L}{p - p_L} \right) = -\ln \tan \frac{\theta}{2}$$
$$p = p_T \cosh \eta \qquad p_L = p_T \sinh \eta$$

- Trigonometry: $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$.
- Integrals

$$K_n(z) = \int_0^\infty e^{-z \cosh t} \cosh(nt) dt \approx \sqrt{\frac{\pi}{2z}} e^{-z} (1 + \dots)$$
$$I_0(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{z \cos \phi} d\phi$$
$$\int x^2 e^{ax} dx = e^{ax} \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right)$$
$$\int_0^\infty x^n e^{-ax} dx = \frac{\Gamma(n+1)}{a^{n+1}} \text{ for } a > 0, n > -1$$

Page 6