FYSH560 spring 2011/kevät 2011

Exam Friday March 11, 2011. Koe perjantai 11.3.2011.

Answer in Finnish or English. Vastaa valintasi mukaan suomeksi tai englanniksi.

1. Consider an optical model for scattering off a target potential at high energy. The elastic scattering amplitude is

$$
\mathcal{A}\left(\mathbf{q}_{T}\right)=\frac{i}{2 \pi} \int \mathrm{~d}^{2} \mathbf{b}_{T} e^{-i \mathbf{q}_{T} \cdot \mathbf{b}_{T}} \Gamma\left(\mathbf{b}_{T}\right)
$$

with $\Gamma\left(\mathbf{b}_{T}\right)$ a complex function. The flux factor has now been absorbed into the amplitude.
(a) What is the physical interpretation of $\Gamma\left(\mathbf{b}_{T}\right)$ and $S\left(\mathbf{b}_{T}\right)=1-\Gamma\left(\mathbf{b}_{T}\right)$ when Γ is real? What are they for a "black disk"?
(b) Calculate the elastic cross section σ_{el} by squaring and integrating over \mathbf{q}_{T}.
(c) What is the absorption cross section $\sigma_{\text {abs }}$? (Hint: In \mathbf{b}_{T} space, if the amplitude of the incoming wave is 1 , what is the amplitude of the outgoing wave? To get the intensity from the amplitude Fourier transform from \mathbf{b}_{T} to \mathbf{q}_{T} and take the absolute value squared. To get $\sigma_{\text {abs }}$ subtract the intensities of the incoming and outgoing waves and integrate over \mathbf{q}_{T}.). Calculate the total cross section $\sigma_{\mathrm{el}}+\sigma_{\mathrm{abs}}$ and interpret as the optical theorem.
2. Draw an n-rung BFKL ladder diagram (in Finnish rung=tikapuun askelma). What are the effective vertices and propagators (you do not need to remember the exact expressions); how have they been obtained? Label the momenta in the ladder and state the multi-Regge kinematical approximation. What does one get by summing all the BFKL ladder diagrams, i.e. summing over n ?
3. (a) How is "diffractive scattering" defined theoretically? What is the experimental signature of diffractive scattering?
(b) Sketch a diffractive event in a detector at an electron-proton collider such as HERA; identifying the incoming and outgoing particles as far as possible. How does this event differ from a typical inclusive (non-diffractive) DIS event? Interpret roughly the scattering angles or rapidities of the outgoing particles in terms of the variables $Q^{2}, \beta \approx Q^{2} /\left(Q^{2}+M_{X}^{2}\right)$ and $x_{\mathbb{P}}=x / \beta$. [The definitions of the kinematical variables are $Q^{2}=-\left(k-k^{\prime}\right)^{2}, x=Q^{2} /(2 P \cdot q), x_{\mathbb{P}}=\left(P-P^{\prime}\right) \cdot q / P \cdot q$, but you do not need to calculate explicitly the angles.]

