FYSH560 spring 2011/kevät 2011

Exam Friday March 11, 2011. Koe perjantai 11.3.2011.

Answer in Finnish or English. Vastaa valintasi mukaan suomeksi tai englanniksi.

1. Consider an optical model for scattering off a target potential at high energy. The elastic scattering amplitude is

$$\mathcal{A}(\mathbf{q}_T) = \frac{i}{2\pi} \int \mathrm{d}^2 \mathbf{b}_T e^{-i\mathbf{q}_T \cdot \mathbf{b}_T} \Gamma(\mathbf{b}_T),$$

with $\Gamma(\mathbf{b}_T)$ a complex function. The flux factor has now been absorbed into the amplitude.

- (a) What is the physical interpretation of $\Gamma(\mathbf{b}_T)$ and $S(\mathbf{b}_T) = 1 \Gamma(\mathbf{b}_T)$ when Γ is real? What are they for a "black disk"?
- (b) Calculate the elastic cross section $\sigma_{\rm el}$ by squaring and integrating over \mathbf{q}_T .
- (c) What is the absorption cross section σ_{abs} ? (Hint: In \mathbf{b}_T space, if the amplitude of the incoming wave is 1, what is the amplitude of the outgoing wave? To get the intensity from the amplitude Fourier transform from \mathbf{b}_T to \mathbf{q}_T and take the absolute value squared. To get σ_{abs} subtract the intensities of the incoming and outgoing waves and integrate over \mathbf{q}_T .). Calculate the total cross section $\sigma_{el} + \sigma_{abs}$ and interpret as the optical theorem.
- 2. Draw an *n*-rung BFKL ladder diagram (in Finnish rung=tikapuun askelma). What are the effective vertices and propagators (you do not need to remember the exact expressions); how have they been obtained? Label the momenta in the ladder and state the multi-Regge kinematical approximation. What does one get by summing all the BFKL ladder diagrams, i.e. summing over n?
- 3. (a) How is "diffractive scattering" defined theoretically? What is the experimental signature of diffractive scattering?
 - (b) Sketch a diffractive event in a detector at an electron-proton collider such as HERA; identifying the incoming and outgoing particles as far as possible. How does this event differ from a typical inclusive (non-diffractive) DIS event? Interpret roughly the scattering angles or rapidities of the outgoing particles in terms of the variables Q^2 , $\beta \approx Q^2/(Q^2 + M_X^2)$ and $x_{\mathbb{P}} = x/\beta$. [The definitions of the kinematical variables are $Q^2 = -(k k')^2$, $x = Q^2/(2P \cdot q)$, $x_{\mathbb{P}} = (P P') \cdot q/P \cdot q$, but you do not need to calculate explicitly the angles.]