Comment the steps in your derivations and calculations!
You can write the solutions either in Finnish or in English.
All problems give 15 points
Time: 4 hours

1. Explain briefly (with a few lines, with perhaps schematic drawings):
(a) Magnon
(b) Cooper pair
(c) Curie temperature
(d) Fluxon (or fluxoid)
(e) Exchange hole
2. The Koopman's theorem gives a physical meaning for the single-electron energies ϵ_{i} in the Hartree-Fock equation, relating them to vertical removal energies of a given electron from the system. (Vertical process means that the removal of a given electron does not disturb the wave functions of the other electrons.) Show that in this case the change of total energy upon removal of electron k is

$$
\Delta E=\left\langle\Phi^{\prime}\right| H\left|\Phi^{\prime}\right\rangle-\langle\Phi| H|\Phi\rangle=-\epsilon_{k}
$$

where the "prime" indicates the state of the system after electron removal. The Hartree-Fock equation is

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \phi_{i}(\mathbf{r})+\frac{e^{2}}{4 \pi \varepsilon_{0}} \sum_{j \neq i} \int \frac{\left|\phi_{j}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \tau^{\prime} \phi_{i}(\mathbf{r})-\frac{e^{2}}{4 \pi \varepsilon_{0}} \sum_{j \neq i, \|} \int \frac{\phi_{j}^{*}\left(\mathbf{r}^{\prime}\right) \phi_{i}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \tau^{\prime} \phi_{j}(\mathbf{r})=\epsilon_{i} \phi_{i}(\mathbf{r})
$$

3. Landau Levels. The Hamiltonian of a free electron without spin is

$$
H=\frac{1}{2 m}(-i \hbar \nabla+e \mathbf{A})^{2}
$$

The vector potential of a uniform magnetic field $B \mathbf{z}$ is $\mathbf{A}=-B y \mathbf{x}$ in the Landau gauge. Search for an eigenfunction of the Schrödinger equation $H \psi=\varepsilon \psi$ in the form

$$
\psi(x, y, z)=\chi(y) \exp \left[i\left(k_{x} x+k_{z} z\right)\right]
$$

and show that $\chi(y)$ satisfies the equation

$$
-\frac{\hbar^{2}}{2 m} \chi^{\prime \prime}(y)+\frac{1}{2} m \omega_{c}^{2}\left(y-y_{0}\right)^{2} \chi(y)=\left(\varepsilon-\frac{\hbar^{2} k_{z}^{2}}{2 m}\right) \chi(y)
$$

where $\omega_{c}=e B / m$ and $y_{0}=-\hbar k_{x} / e B$. Argue that this equation yields the energies of the Landau levels,

$$
\varepsilon_{\nu}=\hbar \omega_{c}\left(\nu+\frac{1}{2}\right)+\frac{\hbar^{2} k_{z}^{2}}{2 m}, \quad \nu=0,1,2, \ldots
$$

4. The attached figure shows the heat capacity c_{V} of a system as a function of temperature. Show that the shaded area A in the figure corresponds to the quantum mechanical zero-point energy using the following equations as the starting point.

$$
\begin{gathered}
A=\int_{0}^{\infty}\left[c_{V}(\infty)-c_{V}(T)\right] d T \\
u(T)=\sum_{s} \int_{0}^{\infty} g(w) \varepsilon_{s}(T) d \omega, \quad \varepsilon_{s}(T)=\left[n_{s}(T)+\frac{1}{2}\right] \hbar \omega, \quad c_{V}=\frac{\partial u}{\partial T}
\end{gathered}
$$

$$
c_{v} \uparrow \text { pulong- Petit }
$$

