2nd Mid-Term Exam

Answer 4 out of 5 questions

- 1. Explain the main features of the interaction of alpha- and beta- particles, and gamma-rays with matter (energy loss, path, range, straggling...)
- 2. a) In a PIXE experiment, a 0.2 mg/cm² film containing 5 parts per million by weight of an element of mass number 100 is bombarded with a 200 nA beam of protons for 10 minutes. The cross section for exciting the L shell of the element is 800 barns and the probability of the excited atom emitting an L X-ray is 50%. Calculate the number of counts recorded if the overall detection efficiency is 0.5%.
 - b) Calculate the mass of ²¹⁰Po required to generate 10W of electric power using a thermoelectric converter that operates with an efficiency of 15%. ²¹⁰Po has a half-life of 138 days and decays by alpha emission with an alpha decay Q-value of 5.4 MeV.
- 3. a) Draw a diagram showing the behavior of the stopping power or energy loss as a function of energy for a heavy charged particle (e.g. Hydrogen, Carbon, Lead, etc). The plot should go from very low to very high energy.
 - b) Explain the main features of the plot.
 - c) A beam of Ar (Z=18) ions at an energy of 2 MeV/u is used to irradiate the following target materials: calcium (Z=20), carbon (Z=6), uranium (Z=92) and tin (Z=50). Write the list of target materials in order of increasing stopping power.
- 4. Explain very briefly (a couple of sentences):
 - a) What is meant by a compound-nucleus reaction? Give an example.
 - b) In calculating the reaction rate, i.e. the number of atoms/s expected in a typical nuclear structure experiment, what three important parameters are required?
 - c) There are 4 fundamental nuclear structure observables which may be obtained via laser spectroscopy. What are they?
 - d) A thermal neutron can induce fission in ²³⁵U. Why is the same mechanism not possible for ²³⁸U?
 - e) Why is there a threshold energy in pair production and what is this energy?
 - f) Why is it not possible to identify light elements such as hydrogen in a Rutherford backscattering experiment?
- 5. a) List as many ingredients you believe necessary for successful (and safe) operation of a nuclear reactor. How is the energy extracted?

FYSN300 Nuclear Physics I

November 29, 2013

The graphite core of a fission reactor contains 1 atom of 1.5% enriched uranium fuel to every 500 atoms of carbon. In steady-state operation the reactor produces 3.5 MW of power for every tonne of fuel. The core is an intimate mixture of fuel and moderator.

- b). Calculate the neutron flux ϕ in the core.
- c). Calculate the thermal neutron utilization factor f.

You may need the following data: Recoverable energy per fission = 200 MeV Cross section for thermal neutron-induced fission of 235 U σ_f = 579b Cross section for thermal neutron absorption in the fuel $\sigma_a(F)$ = 12.9 b Cross section for thermal neutron absorption in graphite $\sigma_a(M)$ = 0.0045 b

November 29, 2013

CONSTANTS

Speed of light	c	2.99792458 × 108 m/s
Charge of electron	e	$1.602189 \times 10^{-19} \text{ C}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \text{ J/K}$
		$8.6174 \times 10^{-5} \text{eV/K}$
Planck's constant	h	$6.62618 \times 10^{-34} \text{ J} \cdot \text{s}$
		$4.13570 \times 10^{-15} \text{eV} \cdot \text{s}$
	$\hbar = h/2\pi$	$1.054589 \times 10^{-34} \text{ J} \cdot \text{s}$
	,	$6.58217 \times 10^{-16} \text{eV} \cdot \text{s}$
Gravitational constant	G	$6.6726 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Avogadro's number	N_{A}	$6.022045 \times 10^{23} \text{ mole}^{-1}$
Universal gas constant	R	8.3144 J/mole · K
Stefan-Boltzmann constant	σ	$5.6703 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
Rydberg constant	R_{∞}	$1.0973732 \times 10^{7} \mathrm{m}^{-1}$
Hydrogen ionization energy		13.60580 eV
Bohr radius	a_0	· 5.291771 × 10 ⁻¹¹ m
Bohr magneton	μ_{B}	$9.27408 \times 10^{-24} \text{ J/T}$
		$5.78838 \times 10^{-5} \text{eV/T}$
Nuclear magneton	μ_N	$5.05084 \times 10^{-27} \text{J/T}$
Tradesia Inngiloron	r N	$3.15245 \times 10^{-8} \text{eV/T}$
Fine structure constant	α	1/137.0360
	hc	1239.853 MeV · fm
	ħс	197.329 MeV · fm
	$e^2/4\pi\epsilon_0$	1.439976 MeV · fm
	- / - 1 1 - 0	

PARTICLE REST MASSES

	u	MeV/c ²
Electron	5.485803×10^{-4}	0.511003
Proton	1.00727647	938.280
Neutron	1.00866501	939.573
Deuteron	2.01355321	1875.628
Alpha	4.00150618	3727.409
π^{\pm}	0.1498300	139.5669
π^0	0.1448999	134.9745
μ	0.1134292	105.6595

CONVERSION FACTORS

$$\begin{array}{lll} 1 \text{ eV} = 1.602189 \times 10^{-19} \text{'J} & 1 \text{ b} = 10^{-28} \text{ m}^2 \\ 1 \text{ u} = 931.502 \text{ MeV}/c^2 & 1 \text{ Ci} = 3.7 \times 10^{10} \text{ decays/s} \\ &= 1.660566 \times 10^{-27} \text{ kg} \end{array}$$