CYCLOTRON PHYSICS FYSN410

EXAMINATION 5.4.2013

You can answer in English or in Finnish. Voit vastata englanniksi tai suomeksi.

- 1. The average magnetic field at outer radius (extraction) of a cyclotron is 1.7 T and extraction radius is 105 cm. What is the energy for ⁴He²⁺ and ¹³²Xe¹⁷⁺?
- A focusing doublet consists of two short lenses with a drift space between them. The focal length of the first lens is f₁ (>0) and the focal length of the second lens is f₂ (<0). The distance between the lenses is d. Calculate the transverse transfer matrix for the system.
 Give a condition to the focal lengths so that the doublet is effectively focusing.
- 3. Explain the operation principle of
 - Classical cyclotron
 - Synchrocyclotron
 - Isochronous cyclotron
- 4. The geometrical emittance of a 20 keV proton beam is $100 \,\pi$ mm mrad. The protons are accelerated further to 50 keV. What is the geometrical emittance then?
- 5. Extraction from a cyclotron.
- 6. The cyclotron RF-system (acceleration) operates at a frequency range of 10 21 MHz, and it consists of two 78 degree Dee-electrodes (four accelerating gaps). The extraction radius is 94 cm. At which frequencies you can accelerate
 - a) 30 MeV protons
 - b) 60 MeV ⁴He
 - c) 240 MeV ⁴⁰Ar

Atomic mass unit u	1.66054 x 10 ⁻²⁷ kg
Proton mass	1.007 u
Electron mass	5.4858 x 10 ⁻⁴ u
Unit charge	1.6022 x 10 ⁻¹⁹ C
Speed of light	2.99792458 x 10 ⁸ m/s