Final exam 8.2.2013

1. Are the following sentences true or false? If a sentence is false, explain shortly why.
a) The r process proceeds close to stable nuclei. [2 p]
b) The vp process takes place in core-collapse supernovae. [2 p]
c) Uranium isotopes are produced via s process. [2 p]
d) ${ }^{12} \mathrm{C}$ is not consumed in the CNO cycle. [2 p]
2. a) Consider the direct capture reaction ${ }^{15} \mathrm{~N}(\mathrm{n}, \gamma)^{16} \mathrm{~N}$. Assume only direct capture into the ground (2) and the first three excited states at $120.42 \mathrm{keV}\left(0^{-}\right), 298.22 \mathrm{keV}\left(3^{-}\right)$ and $397.27 \mathrm{keV}\left(1^{-}\right)$in ${ }^{16} \mathrm{~N}$ plays a role. What is the dominant direct capture reaction mechanism in terms of orbital angular momentum of the neutron (s-wave, p-wave,...) and multipolarity of the emitted gamma ray (E1, M1, E2,...)? The groud-state spin of ${ }^{15} \mathrm{~N}$ is $1 / 2^{+}$. [5 p]
b) Above which minimum excitation energy would a state in ${ }^{16} \mathrm{~N}$ have to be located to serve as a resonance in the ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{\gamma})$ reaction? [3 p]
3. a) Explain the different steps of the ppl chain. [3 p]
b) What is the bottleneck reaction (the slowest reaction) in the ppl chain? [1 p]
c) How much energy is released in the ppl chain? You can use the attached mass tables to calculate that. [1 p]
d) Assuming that the ppl chain is totally responsible for the production of solar neutrinos, estimate the flux of solar neutrinos on Earth. The distance from Earth to Sun is about $1.5 \cdot 10^{8} \mathrm{~km}$.[3 p]
4. The following picture (Iliadis, Fig. 1.2.a) shows the solar abundance pattern as a

function of mass number A. Write a short essay to explain the main features of this distribution. [8 p]
5. a) Estimate a cross section for the reaction ${ }^{44} \mathrm{Ti}(\alpha, \mathrm{p})^{47} \mathrm{~V}$. You have detected 10 protons with your detector setup which has an efficiency of 20%. A $2-\mathrm{cm}$-long helium gas target with a target thickness of about $20 \mu \mathrm{~g} / \mathrm{cm}^{2}$ has been bombarded by a ${ }^{44} \mathrm{Ti}^{13+}$ beam with an intensity of 6.0 pA (electrical current) for 8 hours. [6 p]
b) Was the cross section for the reaction ${ }^{44} \mathrm{Ti}(\alpha, \mathrm{p})^{47} \mathrm{~V}$ discussed in a) measured in normal kinematics or in inverse kinematics? [1 p]
c) Why some reactions are measured in inverse kinematics instead of normal kinematics? [1 p]
6. a) About 3 s after the onset of the Big Bang, the neutron-proton ratio became frozen when the temperature was still as high as $10^{10} \mathrm{~K}$. About 250 s later, fusion reactions took place converting neutrons and protons into ${ }^{4} \mathrm{He}$. Essentially all neutrons were converted to ${ }^{4} \mathrm{He}$. Calculate the abundances of ${ }^{1} \mathrm{H}$ and ${ }^{4} \mathrm{He}$ after the primordial nucleosynthesis. The neutron half-life is 10.24 min and the neutron-proton mass difference is $1.29 \mathrm{MeV} / \mathrm{c}^{2}$. [4 p]
b) Xenon has nine stable isotopes between $A=124-136$. Which of these isotopes are produced by (i) p process, (ii) s process and (iii) r process? Note that some of the isotopes can be produced both via s and r process. Half-lives are given for the nuclei. "+" indicates β^{+}decay, otherwise β - decay for the non-stable nuclei. [4 p]?

Xe	$\begin{gathered} + \\ 123 \\ 2 h \end{gathered}$	124	$\begin{aligned} & +125 \\ & 17 \end{aligned}$	126	$\begin{aligned} & +127 \\ & 36 d \end{aligned}$	128	129	130	131	132	$\begin{aligned} & 133 \\ & 5 \mathrm{~d} \end{aligned}$	134	$\begin{aligned} & 135 \\ & 9 \mathrm{~h} \end{aligned}$	136	$\begin{aligned} & 137 \\ & 4 \mathrm{~min} \end{aligned}$
I	${ }_{+}^{+122}$	+123 13 h	+124 4 d	+ 125 59	+ 126 13 d	127	$\begin{aligned} & 128 \\ & 25 \end{aligned}$	$\begin{aligned} & 129 \\ & 10^{7} a \end{aligned}$	130 12 h	131 8 d	$\begin{aligned} & 132 \\ & 2 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 133 \\ & 21 \mathrm{~h} \end{aligned}$	$\begin{gathered} \hline 134 \\ 52 \end{gathered}$	$\begin{aligned} & 135 \\ & 7 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 136 \\ & 84 \mathrm{~s} \end{aligned}$
Te	$\begin{array}{r} \hline 121 \\ \hline 17 d \\ \hline \end{array}$	122	123	124	125	126	$\begin{gathered} 127 \\ 9 \mathrm{~h} \\ \hline \end{gathered}$	128	129 70 min 128	130	$\begin{gathered} 131 \\ 25 \\ \text { min } \end{gathered}$	$\begin{aligned} & 132 \\ & 76 \mathrm{~h} \\ & \hline \end{aligned}$	$\begin{gathered} 133 \\ 13 \\ 13 \\ \text { min } \end{gathered}$	134 42 min 1	$\begin{array}{r} 135 \\ 19 \mathrm{~s} \\ \hline \end{array}$
Sb	+120 16 min	121	$\begin{array}{r} 122 \\ 3 \mathrm{~d} \\ \hline \end{array}$	123	$\begin{aligned} & 124 \\ & 60 \mathrm{~d} \\ & \hline \end{aligned}$	$\begin{array}{r} 125 \\ 3 \mathrm{a} \\ \hline \end{array}$	$\begin{aligned} & 126 \\ & 12 \mathrm{~d} \end{aligned}$	127 4 d	$\begin{aligned} & 128 \\ & 9 \mathrm{~h} \\ & \hline \end{aligned}$	$\begin{gathered} 129 \\ 4 \mathrm{~h} \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & 6 \text { min } \end{aligned}$	131 23 min	$\begin{aligned} & 132 \\ & 3 \text { min } \end{aligned}$	$\begin{aligned} & 133 \\ & 3 \text { min } \end{aligned}$	$\begin{aligned} & 134 \\ & 0.75 \mathrm{~s} \end{aligned}$

