Basic of Mechanic (FYSP101), Spring 2013

Exam 1.

1. Explain follwing things shortly. (1 p per item)
i) Polar coordinates?
ii) Vector?
iii) Angular velocity?
iv) Newton's II law?
v) Impulse and impulse-momentum theorem?
vi) Momentum?
2. Relation $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$ describes particle's position x as a function of time t. The unit of x is meter m and the unit of time is second s . Moreover x_{0}, v_{0} and a are constants and time $\mathrm{t} \geq 0$.
a) What do x_{0}, v_{0} ja a describe and what are their units? ($11 / 2 \mathrm{p}$)
b) Lets assume that for now on $x_{0}=2.0, v_{0}=-1.0$ and $a=0.5$ (units from a)). Draw a picture of particle's motion diagram, i.e. place-versus-time-graph (1 p).
c) At what moment t particle is at the point $x=2$? And what moment t the particle is at point $x=5$? ($1 / 2$ and $1 / 2 \mathrm{p})$.
d) What is particle's instantaneous velocity at point $\mathrm{x}=2$ and at point $\mathrm{x}=5$? ($1 / 2$ ja $1 / 2 \mathrm{p}$).
e) What is particle's average velocity when it moves from position $\mathrm{x}=2$ to position $\mathrm{x}=5$? ($1 / 2 \mathrm{p}$).
f) What is particles acceleration during that interval? (1 p).
3. A boy pushes a sledge along horizontal road. His sister is sitting in the sledge. Pushing happens with a force that has 30° angle with the road see figure 1. The sledge and the girl weights together 40 kg . Kinetic friction coefficient between the sledge and the road is $\mu_{k}=0.2$. How hard (with what force) the boy has to push so that the sledge moves with a constat velocity? (Requirements: coordinaates $(1 / 2 \mathrm{p})$, draw a free body diagram and vector forces (1 p), equation of motion in vector form (1 p), equation of motion in components [2 dimensions!] (1 p), condition for constat velocity $(1 \mathrm{p})$, solution $(1 \mathrm{p})$, numeric value $(1 / 2 \mathrm{p})$)

Figure 1. Figure for task 3.
4. a) What does it mean if a force or a forcefield is said to be conservative? Give an example of a conservative force. (1 and $1 / 2 \mathrm{p}$)
b) Force $\vec{F}=\mathrm{F} \hat{i},|\vec{F}|=200 \mathrm{~N}$, moves a 10 kg box on a horizontal plane 2 meters along x-axis. How much work that force did? ($11 / 2 \mathrm{p}$)
c) Use conservation of energy and find out at what speed a 2 kg ball dropped from the tower of Pisa hits the ground, when the height of the tower is 56 m . (conservation law 1 p , solution 1 p)
d) Draw a motion diagram with velocity vectors from this situation. Draw ball at least in 3 stages. (1 p)

