When answering the questions please keep in mind the following:

- Mark your name on each paper you use, but don't write down your social security number, even though there is a text box for it in the answer sheet.
- Explain your reasoning carefully. Without the reasoning an answer is worth nothing.
- Check your results whenever possible.

Use of calculators is not allowed in the exam! The available time is four hours.

1. a) Let f be an odd function and g an even function. Show that $f g$ is an odd function. [4p]
b) Explain in a few sentences what is the Bernoulli-l'Hôpital rule for calculating limits, and under which conditions it can be used. [4p]
c) By using the chain rule, derive the formula for the derivative of an inverse function. [4p]
2. Let

$$
f(x)=\frac{2 x-1}{x^{2}-x}
$$

a) Find the zeros of f. [2p]
b) Calculate $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. $[4 p]$
c) Find the second order Taylor polynomial of f about $x=\frac{1}{2}$. [6p]
3. Evaluate the following definite integrals: [for each, 3p]
a) $\int_{0}^{1} x \ln x d x$
b) $\int_{-2}^{2}\left(t^{2}-2 t+1\right)^{-1} \mathrm{~d} t$
c) $\int_{0}^{\ln 2} \frac{\mathrm{e}^{x}}{\mathrm{e}^{-x} \sqrt{\mathrm{e}^{2 x}-1}} \mathrm{~d} x$
d) $\int_{-\pi}^{\pi} x^{3} \cos x d x$
4. For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ the following properties are known:
i) It is an even function.
ii) It is continuous but not differentiable at $x=0$.
iii) Its smallest value (the absolute minimum value) is 1 .
iv) $f^{\prime}(x)=(1-x) \mathrm{e}^{-x}$ for each $x>0$.

Determine what is the function in question and check that it has properties iif iv, [12p]
Special question. Evaluate the definite integral

$$
\int_{0}^{1} x^{x} \mathrm{~d} x
$$

as accurately as you can. [$+4 p$]
From this question you can earn 4 extra points. These points are not calculated in the total maximum score of the exam which is $4 \cdot 12=48$ points.

Elementary functions

$$
\begin{aligned}
n! & =n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot 2 \cdot 1 \\
a^{b} & =\exp (b \ln a) \quad(a>0) \\
\sin ^{2} x & +\cos ^{2} x=1 \\
\sin 2 x & =2 \sin x \cos x \\
\cos 2 x & =1-2 \sin ^{2} x \\
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x) \\
\cos ^{2} x & =\frac{1}{2}(1+\cos 2 x)
\end{aligned}
$$

$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$
$\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$

$$
\begin{aligned}
\sinh x & =\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \\
\cosh x & =\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \\
\cosh ^{2} x & -\sinh ^{2} x=1
\end{aligned}
$$

Partial fraction decomposition

Let $P(x) / Q(x)$ be a rational function with $\operatorname{deg} P<\operatorname{deg} Q$.

- If $Q(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{m}\right)$, where all zeros are of multiplicity 1 , then there exists numbers c_{1}, \ldots, c_{m} such that
$\frac{P(x)}{Q(x)}=\frac{c_{1}}{x-\lambda_{1}}+\frac{c_{2}}{x-\lambda_{2}}+\cdots+\frac{c_{m}}{x-\lambda_{m}}$.
- If Q has a zero λ of multiplicity p, the term in the decomposition corresponding to λ is of the form

$$
\frac{d_{1}}{x-\lambda}+\frac{d_{2}}{(x-\lambda)^{2}}+\cdots+\frac{d_{p}}{(x-\lambda)^{p}}
$$

- If the factorization of Q has quadratic factors R_{1}, \ldots, R_{k} with no real zeros, add terms

$$
\frac{a_{1} x+b_{1}}{R_{1}(x)}+\frac{a_{2} x+b_{2}}{R_{2}(x)}+\cdots+\frac{a_{k} x+b_{k}}{R_{k}(x)}
$$

Special functions

$\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t$

Differentiation

$f(x)$	$f^{\prime}(x)$	
x^{a}	$a x^{a-1}$	$(a \neq 0)$
e^{x}	e^{x}	
$\ln x$	$\frac{1}{x}$	
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\tan x$	$\frac{1}{\cos ^{2} x}$	
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$	
$\cos ^{-1} x$	$-\frac{1}{\sqrt{1-x^{2}}}$	
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$	
$\sinh ^{2} x$	$\frac{\cosh x}{\sinh x}$	
$\cosh ^{2}$		
$\tanh ^{2}$	$\frac{1}{\cosh ^{2} x}$	
$\sinh ^{-1} x$	$\frac{1}{\sqrt{x^{2}+1}}$	
$\cosh ^{-1} x$	$\frac{1}{\sqrt{x^{2}-1}}$	
$\tanh ^{-1} x$	$\frac{1}{1-x^{2}}$	

Integration

See Differentiation.

Applications of differentiation

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
f(x) & =P_{n}(x)+\frac{1}{(n+1)!} f^{(n+1)}(s)(x-a)^{n+1} \\
\mathrm{e}^{x} & =1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots \\
\sin x & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots \\
\cos x & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots \\
\ln (1+x) & \left.\left.=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots \quad(x \in]-1,1\right]\right) \\
\frac{1}{1-x} & =1+x+x^{2}+\cdots \quad(|x|<1)
\end{aligned}
$$

