FYSP112, Exam

- a) Calculate $\vec{A} + \vec{B} \vec{C}$.
- b) Calculate $|\vec{A} \times \vec{B}|$.
- c) Calculate $\vec{A} \cdot \vec{B} \times \vec{C}$.
- 2. The position vector of a body at time t is given by

$$\vec{r}(t) = R\cos(\omega t)\hat{i} + R\sin(\omega t)\hat{j} - \frac{1}{2}gt^2\hat{k}$$

where R, ω and g are constants. Calculate the velocity and acceleration of the body as a function of time.

- 3. The function $f : \mathbb{R}^2 \to \mathbb{R}$ is defined as $f(x, y) = y \ln x + xy^2$.
 - a) Calculate the partial derivatives $\frac{\partial f(x,y)}{\partial x}$ and $\frac{\partial f(x,y)}{\partial y}$.
 - b) In what direction do the values of f increase most rapidly at point (1,2)?
 - c) Calculate the directional derivative of f at point (1,2) in direction pointing from (1,2) towards the point $(\frac{3}{2}, \frac{3}{2})$.
- 4. The function $f : \mathbb{R}^2 \to \mathbb{R}$ is defined as $f(x, y) = e^x \cos(x + y)$. a) Find the equation of the tangent plane to surface z = f(x, y) at point $(0, \frac{\pi}{4})$.
 - b) Use the result obtained in a) to calculate the approximative value of function f at point $(0.2, \frac{\pi}{4} 0.1)$.
- 5. Use the method of Lagrange multipliers to find the maximum area of a rectangle with sides parallel to coordinate axes, and that fits entirely in the region bounded by the x axis and the parabola $y = -3x^2 + 4$ (see Figure).

6. a) Reduce the following complex number expressions in the form x + yi:

$$i(4-3i)(1+2i)$$
 and $\frac{4-3i}{1+2i}$.

- b) Express the complex number $z = 1 + \sqrt{3}i$ in a polar form $re^{i\theta}$.
- c) Calculate e^z and $\ln(z)$ (principal value) for $z = \frac{1}{\sqrt{2}}(-1+i)$.

NOTICE 1: In all your answers, give enough details such that the principle of your solution becomes clear. NOTICE 2: READ THE PROBLEMS CAREFULLY BEFORE ANSWERING!