1. Given are the following three vectors in $\mathbb{R}^{3}: \quad \vec{A}=2 \hat{i}-\hat{j}+\hat{k}, \quad \vec{B}=\hat{i}-\hat{k} \quad$ and $\vec{C}=\hat{i}+2 \hat{j}$.
a) Calculate $\vec{A}+\vec{B}-\vec{C}$.
b) Calculate $|\vec{A} \times \vec{B}|$.
c) Calculate $\vec{A} \cdot \vec{B} \times \vec{C}$.
2. The position vector of a body at time t is given by

$$
\vec{r}(t)=R \cos (\omega t) \hat{i}+R \sin (\omega t) \hat{j}-\frac{1}{2} g t^{2} \hat{k}
$$

where R, ω and g are constants. Calculate the velocity and acceleration of the body as a function of time.
3. The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined as $f(x, y)=y \ln x+x y^{2}$.
a) Calculate the partial derivatives $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$.
b) In what direction do the values of f increase most rapidly at point $(1,2)$?
c) Calculate the directional derivative of f at point $(1,2)$ in direction pointing from $(1,2)$ towards the point $\left(\frac{3}{2}, \frac{3}{2}\right)$.
4. The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined as $f(x, y)=e^{x} \cos (x+y)$.
a) Find the equation of the tangent plane to surface $z=f(x, y)$ at point $\left(0, \frac{\pi}{4}\right)$.
b) Use the result obtained in a) to calculate the approximative value of function f at point ($0.2, \frac{\pi}{4}-0.1$).
5. Use the method of Lagrange multipliers to find the maximum area of a rectangle with sides parallel to coordinate axes, and that fits entirely in the region bounded by the x axis and the parabola $y=-3 x^{2}+4$ (see Figure).

6. a) Reduce the following complex number expressions in the form $x+y i$:

$$
i(4-3 i)(1+2 i) \quad \text { and } \quad \frac{4-3 i}{1+2 i} .
$$

b) Express the complex number $z=1+\sqrt{3} i$ in a polar form $r e^{i \theta}$.
c) Calculate e^{z} and $\ln (z)$ (principal value) for $z=\frac{1}{\sqrt{2}}(-1+i)$.

NOTICE 1: In all your answers, give enough details such that the principle of your solution becomes clear.
NOTICE 2: READ THE PROBLEMS CAREFULLY BEFORE ANSWERING!

