FYS S300 Mittaustekniikka
Lectures: K. Arutyunov
Exam 11.01.2013
Problem 1 (4 points)
A liquid of density $\boldsymbol{\rho}$ flows through the two horizontal pipes of different cross sections \boldsymbol{A}_{1} and \boldsymbol{A}_{2} (Fig. 1). Two manometers measure the corresponding pressures \boldsymbol{P}_{1} and \boldsymbol{P}_{2}. What is the flow (amount of liquid per unit time)? Neglect the liquid viscosity and compressibility.

Fig. 1
Problem 2 (5 points)
A voltage $\mathrm{V}_{\mathrm{in}}(\mathrm{t})$ (Fig. 2.2, solid lines) is applied to the inputs of a device, schematically represented by Fig. 2.1.
2.1 (2 points) Devise circuit providing output $\mathrm{V}_{\text {out }}(\mathrm{t})$ plotted in Fig. 2.3
2.2 (3 points) Devise circuit providing output $\mathrm{V}_{\text {out }}(\mathrm{t})$ plotted in Fig. 2.4

Problem 3 (5 points)

Electromagnetic wave is penetrating from the medium I (top) with dielectric constant ε_{1} at the angle $\alpha_{1}=30^{\circ}$ into the medium II (bottom) with constant ε_{2} and propagate at the angle $\alpha_{2}=60^{\circ}$ (Fig. 3).
Consider the magnetic permeability μ is the same in both materials: $\mu_{1}=\mu_{2}=1$. 3.1 (4 points) What is the relation between ε_{1} and ε_{2} ?
3.2 (1 point) If medium I is vacuum, what is the speed of light in medium II?

Fig. 3

Problem 4 (5 points)
4.1 (3 points) Explain principle of operation of a lock-in amplifier. Draw schematic diagram, input and output signals.
4.2 (2 points) Explain how a lock-in amplifier can be used to measure derivative of the current-voltage characteristic dV/dI of a non-linear element.

Problem 5 (6 points)
AC voltage $V_{i n}=V_{o} \sin (\omega t)$ is provided to the input of the circuit (Fig. 4) .
5.1 (2 points) Draw the dependence of the normalized output voltage $\left|\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}\right|$ on the frequency of the input signal ω.
5.2 (1 point) At what frequency ω^{*} there is an extremum of the function $\left(\left|\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}\right|\right)(\omega)$? Is it MIN or MAX?
5.3 (3 points) At what frequency $\left|\mathrm{V}_{\text {out }}\right|=\left|\mathrm{V}_{\text {in }}\right| / \sqrt{ } 2$?

Fig. 4

