19.12.2013

- 1. Explain / define briefly
 - (a) Transfer function
 - (b) Frequency function
 - (c) Open loop control
 - (d) State variable
 - (e) P controller
 - (f) Lead compensator
- 2. A characteristic equation of a system is given by $s^5 + 3s^4 + 4s^3 + 6s^2 + s + K = 0$. At which values of K the system is stable?
- 3. A process is described by a differential equation $2\ddot{y}(t) + 5\dot{y}(t) + 2y(t) = 0$. Solve y(t) as a function of time when y(t) has the initial values of y(0) = 4 ja $\dot{y}(0) = 1$.
- 4. Consider a negative feedback system (ie. feedback = -1), that has the open loop (ie. the forward branch) transfer function given by

$$G(s) = \frac{K}{s(s+3)(s+6)}$$

Show that points $s_1 = -0.55 + i \cdot 3.0$ ja $s_2 = -1.1 + i \cdot 1.4$ belong (at a sufficient accuracy) in the root locus. Give in both cases the value of K.

- 5. Consider the system described in exercise 4. Give the value of *K* when the real parts of a complex pole pair are -0.8. What is the transfer function in this case?
- 6. A sinusoidal function $u(t) = A_u \sin(\omega t)$ represents an input to a process. The process is characterized by a transfer function $G(s) = \frac{1}{s+1}$.

Determine the phase shift φ and amplitude ratio A as functions of ω ,

- (a) by using the response to a continuity state of the time domain and
- (b) by using a frequency function.

Laplace transform	Function of time	
1	$\delta(t)$	M 1
$\frac{1}{s}$	1	M2
$\frac{1}{s^2}$	t	М3
$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	M4
$\frac{1}{s+a}$	e ^{-at}	M5
$\frac{1}{(s+a)^2}$	te ^{-ai}	М6
$\frac{1}{(s+a)^{n+1}}$	$\frac{t^n e^{-\alpha t}}{n!}$	M7
$\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-at})$	M8
$\frac{1}{(s+a)(s+b)}$	$\frac{1}{a-b}(e^{-bt}-e^{-at})$	M 9
$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} + \frac{1}{ab(b-a)}(ae^{-bt} - be^{-at})$	M10
$\frac{a}{s^2 + a^2}$	sin(at)	M11
$\frac{s}{s^2 + a^2}$	$\cos(at)$	M12
$\frac{a}{\left(s+b\right)^2+a^2}$	$e^{-bt}\sin(at)$	M13
$\frac{s+b}{\left(s+b\right)^2+a^2}$	$e^{-bt}\cos(at)$	M14
$\frac{s+a}{s+b}$	$\delta(t) + (a-b)e^{-bt}$	M15

Summing points and Branch points:

(a) Cascaded system, (b) parallel system and (c) feedback system:

