Exam 22.11.2013

- 1. Explain / define briefly
 - (a) Laplace transform
 - (b) Transfer function
 - (c) Root locus
 - (d) Test signal
 - (e) PID controller
 - (f) Phase margin
- 2. Simplify the following block diagram that represents a system. Determine the closed loop transfer function C(s)/R(s).

- 3. A system is represented by a transfer function $G(s) = \frac{1}{s^2+4s+1}$. Sketch
 - (a) Nyquist plot
 - (b) Bode diagram for the amplitude and phase
- 4. A characteristic equation of a system is given by $4s^6 + s^5 + 3s^4 + 2s^2 + s + K = 0$. At which values of *K* the system is stable?
- 5. A process is described by a differential equation $2\ddot{y}(t) + 5\dot{y}(t) + 2y(t) = 4u(t)$. Solve y(t) as a function of time when u(t) is a step function and y(t) has the initial values of y(0) = 4 ja $\dot{y}(0) = 1$.
- 6. Determine (a) unity impulse response and (b) unity step response for the operational amplifier circuit illustrated in the following figure, when $R_1 = R_2 = C = 1$.

Laplace transform	Function of time	
1	$\delta(t)$	M 1
$\frac{1}{s}$	1	M2
$\frac{1}{s^2}$	t	М3
$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	M4
$\frac{1}{s+a}$	e ^{-at}	M5
$\frac{1}{\left(s+a\right)^2}$	te ^{-at}	M 6
$\frac{1}{(s+a)^{n+1}}$	$\frac{t^n e^{-\alpha t}}{n!}$	M7
$\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-at})$	M8
$\frac{1}{(s+a)(s+b)}$	$\frac{1}{a-b}(e^{-bt}-e^{-at})$	M9
$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} + \frac{1}{ab(b-a)}(ae^{-bt} - be^{-at})$	M10
$\frac{a}{s^2 + a^2}$	sin(at)	M11
$\frac{s}{s^2 + a^2}$	$\cos(at)$	M12
$\frac{a}{\left(s+b\right)^2+a^2}$	$e^{-bt}\sin(at)$	M13
$\frac{s+b}{\left(s+b\right)^2+a^2}$	$e^{-bt}\cos(at)$	M14
$\frac{s+a}{a+b}$	$\delta(t) + (a-b)e^{-bt}$	M15

Summing points and Branch points:

(a) Cascaded system, (b) parallel system and (c) feedback system:

<i>n</i> : <i>n</i> _1:	а ₀ а ₁	а ₂ а ₃	а 4 а 5	а ₆ а ₇	$b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1}$	$c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1}$	$d_1 = \frac{c_1 b_2 - b_1 c_2}{c_1}$
<i>n</i> –2:	b_1	b_2	b_3	<i>b</i> ₄	$a_1 a_4 - a_0 a_5$	$b_1a_5 - a_1b_3$	$d_{-} c_1 b_3 - b_1 c_3$
<i>n</i> –3:	C 1	C ₂	C 3	<i>C</i> ₄	a_1	$b_2 = \frac{b_1}{b_1}$	$c_2 = \frac{c_1}{c_1}$
n-4:	d ₁	d ₂	d 3	d 4	$b_3 = \frac{a_1 a_6 - a_0 a_7}{a_1}$	$c_3 = \frac{b_1 a_7 - a_1 b_4}{b_1}$	$d_3 = \frac{c_1 b_4 - b_1 c_4}{c_1}$
2:	e_1	e ₂					
1:	f_1				•	•	•
0:	g_1					•	•