FYSS320 - Vacuum techniques

Exam, 30.8.2013

Short, concise answers are preferred.
Vastaukset voi antaa myös Suomen kielellä.

Problem 1.

Let's assume a cubic-shaped vacuum chamber with a length of the inside wall equal to 20 cm. Assume two pressures:
a) 10 Pa .
b) $10^{-5} \mathrm{~Pa}$.

In both cases, describe the amount of the rest gas, its composition and the state. Explain how the heat is transferred in the rest gas and list means to reach such a vacuum.

Problem 2.

a) Discuss shortly different sources of gas load in the vacuum system.
b) Explain shortly the principle of gas ballast.
c) Is it possible to measure the absolute partial pressure of the certain gas component by using the rest gas analyzer? Present a short justification for your answer.

Problem 3.

Two thermally isolated vacuum chambers have a common wall with an aperture diameter equal to d. Absolute temperatures of chambers are T_{1} and T_{2}.
a) Show that diffusion coefficients D_{1} and D_{2} have the following dependence:
$\mathrm{D}_{1} / \mathrm{D}_{2}=\left(\mathrm{T}_{1} / \mathrm{T}_{2}\right)^{3 / 2}$, when $\mathrm{d} \gg<\lambda>$ and $<\lambda>$ is an average collision distance of molecules.
b) Show, that the pressure and density of the gas are different in different chambers and those can be expressed as
$\rho_{1} / \rho_{2}=\left(T_{2} / T_{1}\right)^{1 / 2}$ and $P_{1} / P_{2}=\left(T_{1} / T_{2}\right)^{1 / 2}$, when $\mathrm{d} \lll \lambda>$

Problem 4.

A vacuum chamber should be pumped down from an atmospheric pressure to high vacuum. For this purpose it is connected to a pumping station containing a turbo molecular pump, a roughing pump and necessary valves, etc. Draw a layout of the typical connection to vacuum system and name all components. Describe means to prevent oil diffusion, if any, to the vacuum system.

Appendices:
Table 2.5.
Critical constants $T_{\mathrm{c}}, P_{\mathrm{c}}$, Van der Waals' constants A, b, molecular diameters ξ, and mean free paths λ, computed from eqs. (2.26), (2.29), (2.56).

Gas	Formula	$T_{\text {c }}$	$P_{\text {c }}$	A	b	ξ	λ^{*}
		${ }^{\circ} \mathrm{C}$	atm	$\left[\frac{\mathrm{cm}^{3}}{\mathrm{~mole}}\right]^{2} \cdot \mathrm{~atm}$	$\mathrm{cm}^{3} /$ mole	cm	cm
Helium	He	-267.9	2.26	3.412×10^{4}	23.70	2.61×10^{-8}	9.26×10^{-3}
Neon	Ne	-228.5	25.9	2.107×10^{5}	17.09	2.38×10^{-8}	1.03×10^{-2}
Argon	A	-122.0	48.0	1.345×10^{6}	32.19	2.94×10^{-8}	7.34×10^{-5}
Krypton	Kr	-63.0	54.2	2.318×10^{6}	39.78	3.16×10^{-8}	6.38×10^{-3}
Xenon	Xe	16.6	58.2	4.194×10^{6}	51.05	3.43×10^{-8}	5.40×10^{-8}
Hydrogen	H_{2}	-239.9	12.8	2.450×10^{5}	26.61	2.76×10^{-3}	8.33×10^{-3}
Nitrogen	N_{2}	-147.1	33.5	1.390×10^{6}	39.13	3.14×10^{-8}	6.44×10^{-3}
Air	-	-	- :	1.33×10^{6}	36.6	-	-
Oxygen	O_{2}	-118.8	49.7	1.360×10^{6}	31.83	2.93×10^{-8}	7.40×10^{-8}
Mercury	Hg	>1500	>200	8×10^{6}	17.0	2.38×10^{-8}	1.12×10^{-8}
Ammonia	NH_{3}	132.4	111.5	4.17×10^{6}	37.07	3.09×10^{-8}	6.68×10^{-3}
Carbon							6.36×10^{-3}
Carbon							6.13×10^{-3}
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	36.0	62.0	4.39×10^{6}	51.40	3.44×10^{-8}	5.38×10^{-3}

* Mean free path for $P=1$ Torr, $T=273^{\circ} \mathrm{K}$.

Kaasu	D $\left(10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$	K $\left(10^{-2} \mathrm{~J} / \mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K}\right)$	η $\left(10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\right)$	ξ $\left(10^{-10} \mathrm{~m}\right)$
H_{2}	12,8	16,8	0,847	2,74
He		14,3	1,87	2,19
CH_{4}	2,06	3,04	1,03	4,18
Ne	4,52	4,60	3,12	2,54
CO		2,30	1,66	3,78
$\mathrm{~N}_{2}$	1,78	2,37	1,67	3,77
O_{2}	1,81	2,42	1,91	3,64
Ilma		2,41	1,71	3,76
Ar	1,57	1,63	2,09	3,68
CO_{2}	0,97	1,46	1,38	4,64
Cl_{2}		0,77	1,24	5,52

Unit	Pa
bar	10^{5}
Torr $=\mathrm{mmHg}$	133.3
atm	1.013×10^{5}
psi	6.89×10^{3}

$$
\left\langle E_{t r}\right\rangle=\frac{3}{2} \cdot k \cdot T \quad U_{t r}=\frac{3}{2} N k T=\frac{3}{2} n R T
$$

$\langle v\rangle=\left(\frac{8 k T}{\pi m}\right)^{1 / 2} \quad v_{\text {prob }}=\left(\frac{2 k T}{m}\right)^{1 / 2}$
$\Phi=\rho_{N} \cdot\left(\frac{k T}{2 \pi m}\right)^{1 / 2} \quad \Phi=\frac{1}{4} \cdot \rho_{N} \cdot\langle v\rangle \quad \Phi=\frac{P}{(2 \pi m k T)^{1 / 2}}$
$\tau_{m}=\frac{1}{\xi^{2} \Phi} \quad\langle\lambda\rangle=\frac{1}{\pi \sqrt{2} \cdot \rho_{N} \cdot \zeta^{2}}$
$\tau=\frac{\langle\lambda\rangle}{\langle v\rangle} \quad f=\frac{1}{\tau}=\frac{\langle v\rangle}{\langle\lambda\rangle}$
$D=\frac{1}{3} \cdot\langle v\rangle \cdot\langle\lambda\rangle \quad K=\frac{1}{2} \cdot \rho_{N} \cdot k \cdot\langle v\rangle \cdot\langle\lambda\rangle \quad \eta=\frac{1}{3} \cdot \rho_{N} \cdot\langle m\rangle \cdot\langle v\rangle \cdot\langle\lambda\rangle$
$C=\frac{\pi}{8} \cdot d^{2} \cdot\langle w\rangle \cdot \frac{P_{1}+P_{2}}{P_{1}-P_{2}} \quad$ Conductance in compressible flow
$C=\frac{\pi \cdot d^{4}}{256 \cdot \eta \cdot L} \cdot\left(P_{1}+P_{2}\right) \quad$ Conductance in laminar flow
$C=\frac{1}{6} \cdot\left(\frac{2 \cdot \pi \cdot k \cdot T}{m}\right)^{1 / 2} \cdot \frac{d^{3}}{L} \quad$ Conductance in molecular flow
$C=\frac{\pi \cdot d^{4}}{128 \cdot \eta \cdot L} \cdot\langle P\rangle+\frac{1}{6} \cdot\left(\frac{2 \cdot \pi \cdot k \cdot T}{m}\right)^{1 / 2} \cdot \frac{d^{3}}{L} \cdot\left[\frac{\left.1+(m / k \cdot T)^{1 / 2} \cdot d \cdot\langle P\rangle / \eta\right]}{1+1.24 \cdot(m / k \cdot T)^{1 / 2} \cdot d \cdot\langle P\rangle / \eta}\right]$

1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 2005 by P.J. Mohr and B.N. Taylor (NIST). Based mainly on the "CODATA Recommended Values of the Fundamental Physical Constants: 2002° by P.J. Mohr and B.N. Taylor, Rev. Mod. Phys. 77, 1 (2005). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The flgures in parentheses after the values give the 1 -standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per $10^{9}(\mathrm{ppb})$ are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2002 CODATA set of constants may be found at http://pbysics.n1st.gov/constants

*The meter is the length of the path traveled by light in vacuum during a time interval of $1 / 299792458$ of a second.
$\dagger_{\text {At }} Q^{2}=0$. At $Q^{2} \approx m_{W}^{2}$ the value is $\sim 1 / 128$.
\ddagger Absolute lab messurements of G_{N} have been made only on scales of about 1 cm to 1 m .
** See the discussion in Sec. 10, "Electroweak model and constraints on new physics."
${ }^{1 \dagger}$ The corresponding $\sin ^{2} \theta$ for the effective angle is $0.23152(14)$.

Table 4.1. Revised 2005 by C.G. Wohl (LBNL) and D.E. Groom (LBNL). Adapted from the Commission on Atomic Weights and Isotopic Abundanoes, "Atomic
 relative to the mass of ${ }^{12} \mathrm{C}$, defned to be exactly 12 unified atomic mass units (u) (apprac. $\mathrm{g} /$ mole). Relative isotopic abundances often vary considerably, both in
 112 has not been assigned a name, and there are no confirmed elements with $\mathrm{Z}>112$.

[^0]
[^0]:

 8.

