-Notice: The course book; White, Fluid Mechanics is allowed in the exam.
-Both finnish and english can be used in answering.
-Mikäli tehtävissä on tuntemattomia englanninkielisiä sanoja, voit pyytää sanakirjaa (tai käännöstä) assistentilta.

1. a) Explain shortly (but precisely) the meanining of the following concepts:
al) Newtonian fluid (Newtoninen neste),
a2) Turbulent flow (Turbulentti virtaus)
a3) Rotational flow (Pyörteellinen virtaus).
b) Explain shortly (but precisely) the physical interpretation of the following quantities:
b1) $\nabla \cdot \vec{v}$; where \vec{v} is flow velocity of a fluid.
b2) $\int_{A} \ddot{\tau} \cdot d \vec{A}$; given that $\vec{\sigma}=-p \overrightarrow{\mathbf{I}}+\vec{\tau}$ is the total stress tensor of an incompressible Newtonian fluid, p is its pressure, $\ddot{\mathrm{I}}$ is unit tensor and A is an arbitrary surface in the fluid.
2. The rectangular dam gate shown in Figure 1 is hinged at point H in a dam wall. The gate is 2 m wide normal to the plane of the figure. Calculate the minimum force \vec{F} acting at point A required to hold the gate closed.

Figure 1
3. A closed tank of volume $V=1 \mathrm{~m}^{3}$ is filled with salt solution with initial density $\rho_{\mathrm{s} 0}=1100 \mathrm{~kg} / \mathrm{m}^{3}$. Pure water of density $\rho_{\mathrm{W}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ flows in the tank and salt solution flows out of the tank at volumetric flow rate $Q=0.01 \mathrm{~m}^{3} / \mathrm{s}$ (see Figure 2).
a) Using Reynolds transport theorem, derive a formula for the density of solution ρ_{S} in the tank as a function of time assuming instantaneous mixing of incoming pure water and the salt solution in the tank.
b) At what time does the density of solution reach the value $\rho_{\mathrm{S}}=1001 \mathrm{~kg} / \mathrm{m}^{3}$.

Figure 2

4. The horizontal turbine shown in Figure 3 is supplied with water at flow rate $\mathrm{Q}=0.6 \mathrm{~m}^{3} / \mathrm{s}$ through the inlet pipe of diameter 0.3 m . The outlet pipe has diameter 0.4 m . The pressure difference across the turbine is measured to be 75 kPa . Calculate the shaft power \dot{W}_{S} delivered by the turbine.

Figure 3

