1. Consider cyclic group containing three elements, $C_{3}=\left\langle x: \chi^{3}=e\right\rangle$.
(a) (1 p.) Consider the assignment

$$
x \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

Show that this gives a representation of C_{3} on \mathbb{C}^{2}.
(b) (3 p.) What is its character? Reduce this character in terms of irreducible characters of C_{3}. (Remember that all irreducible characters of cyclic group of order n are expressed in terms of $n^{\text {th }}$ roots of 1.)
(c) (2 p.) What are C_{3}-invariant subspaces in $\mathrm{V}=\mathbb{C}^{2}$?
2. Consider S_{3}. Its character table is

	e	(12)	(123)
$\mathrm{\chi}_{1}$	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

(a) (2 p.) S_{3} has a cyclic subgroup $C_{3}=\langle(123)\rangle \subset S_{3}$. Consider the restriction $\operatorname{Res}_{\mathrm{C}_{3}}^{S_{3}} \chi_{i}$ of each irreducible character $\chi_{i}(i=1,2,3)$ of S_{3} and decompose these in terms of irreducible characters of C_{3}.
(b) (2 p.) Define $\operatorname{Ind}_{C_{3}}^{S_{3}} \eta$, and explain the connection between the linear operators $\operatorname{Res}_{\mathrm{C}_{3}}^{S_{3}}$ and $\operatorname{Ind}_{\mathrm{C}_{3}}^{\mathrm{S}_{3}}$ given by the Frobenius reciprocity.
(c) (2 p.) Work out $\operatorname{Ind}_{C_{3}}^{S_{3}} \eta_{i}$ for all irreducible characters $\eta_{i}(i=1,2,3)$ of C_{3}, and decompose these in terms of the irreducible characters of S_{3}.
3. Consider $\mathrm{CH}_{3} \mathrm{Cl}$ molecule.
(a) (2 p.) Determine its molecular symmetry.
(b) (3 p.) Consider its fifteen dimensional representation on the configuration space, and decompose it into irreducible representations. Remember that the trace of rotation by angle θ is $\operatorname{tr} R(\theta)=1+2 \cos \theta$.
(c) (1 p.) How many vibrational eigenmodes there are?

4. Consider the following partly filled character table of group G. The conjugacy classes are denoted as $C_{i}, i=1, \ldots, 5$ and the number in the second row gives the number of elements in each conjugacy class.

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
	1	4	5	5	
χ_{1}					
χ_{2}	1	1		-1	
χ_{3}	1	1	-1	i	
χ_{4}	1	1	-1	-i	
χ_{5}		-1			

Answer the following question explaining clearly your steps
(a) (1p.) Fill in the row for χ_{1}.
(b) (1 p.$)$ Find $\chi_{5}\left(\mathrm{C}_{4}\right)$.
(c) (1 p.) Find the order of G.
(d) (1 p.) Fill in the last column.
(e) (1 p.) Find $\chi_{5}\left(\mathrm{C}_{1}\right)$.
(f) (1 p.) Complete the table.

