- 1. Consider cyclic group containing three elements, $C_3 = \langle x : x^3 = e \rangle$.
 - (a) (1 p.) Consider the assignment

$$\mathbf{x} \mapsto \left(egin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}
ight)$$

Show that this gives a representation of C_3 on \mathbb{C}^2 .

- (b) (3 p.) What is its character? Reduce this character in terms of irreducible characters of C_3 . (Remember that all irreducible characters of cyclic group of order n are expressed in terms of nth roots of 1.)
- (c) (2 p.) What are C₃-invariant subspaces in $V = \mathbb{C}^2$?
- 2. Consider S₃. Its character table is

	e	(12)	(123)
χ1	1	1	1
χ2	1	-1	1
χ3	2	0	-1

- (a) (2 p.) S_3 has a cyclic subgroup $C_3 = \langle (123) \rangle \subset S_3$. Consider the restriction $\operatorname{Res}_{C_3}^{S_3} \chi_i$ of each irreducible character χ_i (i = 1, 2, 3) of S_3 and decompose these in terms of irreducible characters of C_3 .
- (b) (2 p.) Define $Ind_{C_3}^{S_3}\eta$, and explain the connection between the linear operators $Res_{C_3}^{S_3}$ and $Ind_{C_3}^{S_3}$ given by the Frobenius reciprocity.
- (c) (2 p.) Work out $Ind_{C_3}^{S_3}\eta_i$ for all irreducible characters η_i (i = 1, 2, 3) of C_3 , and decompose these in terms of the irreducible characters of S_3 .
- 3. Consider CH₃Cl molecule.
 - (a) (2 p.) Determine its molecular symmetry.
 - (b) (3 p.) Consider its fifteen dimensional representation on the configuration space, and decompose it into irreducible representations. Remember that the trace of rotation by angle θ is trR(θ) = 1 + 2 cos θ .
 - (c) (1 p.) How many vibrational eigenmodes there are?

4. Consider the following partly filled character table of group G. The conjugacy classes are denoted as C_i , i = 1, ..., 5 and the number in the second row gives the number of elements in each conjugacy class.

	C ₁ 1	C ₂ 4	C ₃ 5	C ₄ 5	C ₅
$\begin{array}{c} \chi_1 \\ \chi_2 \\ \chi_3 \end{array}$	1	1	-1	-1 i	
$\begin{array}{c} \chi_4 \\ \chi_5 \end{array}$	1	1 -1	-1	-i	

Answer the following question explaining clearly your steps

- (a) (1 p.) Fill in the row for χ_1 .
- (b) (1 p.) Find $\chi_5(C_4)$.
- (c) (1 p.) Find the order of G.
- (d) (1 p.) Fill in the last column.
- (e) (1 p.) Find $\chi_5(C_1)$.
- (f) (1 p.) Complete the table.