
FYST530 Quantum Mechanics II

1. intermediate exam (1. välikoe): 4 problems, 4 hours

09.03.2012

1. As you remember, the Hamilton operator for a charged particle interacting with an
electromagentic field can be obtained through the minimal substitution principle,

Ĥ0(p̂, x̂)→ Ĥ0(p̂− qA(x, t), x̂) + qϕ(x, t),

where A(x, t) is the vector potential and ϕ(x, t) is the scalar potential, and q is the charge
of the particle. Recall that p̂ = −ih̄∇.

a) Applying the minimal substitution principle to the Hamilton operator of a free spin-1
2

particle, Ĥ = 1
2m

(~σ · p̂)2, show that the system’s Hamilton operator becomes

Ĥ =
I2

2m
(p̂− qA(x, t))2 − qh̄

2m
~σ ·B(x, t) + qϕ(x, t)I2.

Above, I2 is the 2 × 2 unit matrix and B(x, t) = ∇ × A(x, t) is the magnetic field.
Consult the collection of formulae in the end of the question paper for the needed Pauli
spin-matrix identity.

b) Show that a gauge transformation

Ã(x, t) = A(x, t) +∇f(x, t)

ϕ̃(x, t) = ϕ(x, t)− ∂f(x, t))

∂t

ψ̃(x, t) = ei
q
h̄
f(x,t)ψ(x, t)

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation
invariant,

Ĥ(Ã, ϕ̃)ψ̃ = ih̄
∂ψ̃

∂t

2.a) The asymptotic (r → ∞) solution of the integral equation for potential scattering
is known to be

Ψki
(r) = Φki

(r)− e±ikr

r

1

4π

∫
d3r′e∓ikf ·r′U(r′)Ψki

(r′),

where U(r) = 2µ
h̄2V (r), ki = kêz, kf = kêr, k

2 = 2µE/h̄2, and Φki
(r) = (2π)−3/2eiki·r.

Identify the scattering amplitude fk(θ, ϕ) in the above expression and explain in one
sentence why we should choose the upper signs in the exponents. Then derive the Born
approximation for the scattering amplitude fB(θ, φ).

b) Using the result which you obtained above, compute the scattering amplitude fB(θ, φ)
and the differential cross-section dσ/dΩ in the Born approximation for a radially sym-
metric Yukawa potential

V (r) = V0
e−κr

r
,

where V0 and κ > 0 are constants.

c) Show explicitly how your result for dσ/dΩ depends on the scattering angle θ and on
the energy of the collision. Sketch dσ/dΩ as a function of θ, both at the small-energy

limit E � h̄2κ2

2µ
and at the high-energy limit E � h̄2κ2

2µ
. According to your result, what

happens to the backward scattering cross section at high energies?



3. Let’s consider the scattering off a delta-function shell potential

V (r) = αδ(r − a),

where a and α are constants, in terms of the partial wave analysis. The scattering ampli-
tude and the partial wave amplitudes are known to be

fk(θ) =
1

k

∞∑
l=0

(2l + 1)fl(k)Pl(cos θ), fl(k) = eiδl(k) sin δl(k).

Note also that the delta function above applies only to the radial disctance r but not to
the angles θ, ϕ.

a) Starting from the stationary radial Schrödinger equation (see the collection of formu-
lae), compute the s-wave phase shift δ0(k). Express your final result for tan δ0(k) in terms
of basic trigonometric functions and the dimensionless variable β ≡ 2mαa

h̄2 . You can use
(without deriving it) the fact that the discontinuity of the 1st derivatives of R(r) at r = a
is given by R′(a+ ε)−R′(a− ε) = β

a
R(a), where ε→ 0+.

b) Compute the s-wave contribution to the total cross section in the low-energy limit,
ka� 1. Express your result in terms of the constants β and a.

c) Using the exact result which you obtained in the item (a) above, explain briefly when
resonant scattering in the s-wave takes place, and write down an equation from which
we could (through numerical solution) obtain the value of the energy at which such a
resonant scattering happens.

4. Let’s put a spinless Hydrogen atom into a weak time-dependent external electric field,
which points into the y direction and vanishes asymptotically in time. Let’s suppose this
gives rise to a perturbation potential

V̂S(t) = C
ŷ

(t2 + τ 2
1 )(t2 + τ 2

2 )
,

where C and τ2 > τ1 > 0 are real constants. Note that ŷ above is the y-coordinate
operator (and not a unit vector).

a) Using lowest-order time-dependent perturbation theory, find the selection rules for n,
l and m in transitions from the ground state |1, 0, 0〉 to any of the excited states. The
collection of formulae is most likely again useful.

b) Calculate the probability of a transition from the ground state to a 2p-state |2, 1, 1〉
during an infinitely long period of time (set t0 → −∞ and t→∞). In doing the residue
integrals, you should explain in sufficient detail why you choose the particular half-plane
for closing the integration path. Express the final result in terms of the constants C, τ1,
and τ2, and the Bohr radius and Hydrogen eigenenergies.



Useful(?) formulas and equations, for any of the problems:

Spherical coordinates and spherical harmonics:

r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) ∇2 =
1

r2

∂

∂r
(r2 ∂

∂r
)− 1

h̄2r2
L̂2

∫
d3r =

∫ ∞
0

drr2

∫
4π

dΩ =

∫ ∞
0

drr2

∫ π

0

dθ sin θ

∫ 2π

0

dϕ =

∫ ∞
0

drr2

∫ 1

−1

d(cos θ)

∫ 2π

0

dϕ

L̂2Ylm(θ, ϕ) = h̄2l(l + 1)Ylm(θ, ϕ) L̂zYlm(θ, ϕ) = h̄mYlm(θ, ϕ)

L̂2 = −h̄2

[
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

] ∫
dΩY ∗l′m′(θ, ϕ)Ylm(θ, ϕ) = δll′δmm′

Ylm(θ, ϕ) = (−1)
m+|m|

2

√
2l + 1

4π

√
(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ Yl,−m(θ, ϕ) = (−1)mY ∗l,m(θ, ϕ)

P k
l (z) = (1− z2)k/2

dk

dzk
Pl(z) Pl(z) =

1

2ll!

dl

dzl
(z2 − 1)l

Y00(θ, ϕ) =
1√
4π

Y10(θ, ϕ) =

√
3

4π
cos θ Y1±1(θ, ϕ) = ∓

√
3

8π
sin θe±iϕ

Y20(θ, ϕ) =

√
5

16π

(
3 cos2 θ − 1

)
Y2±1(θ, ϕ) = ∓

√
15

8π
cos θ sin θe±iϕ Y2±2(θ, ϕ)

√
15

32π
sin2 θe±2iϕ

Stationary Schrödinger equation, the radial part:

r2d
2R(r)

dr2
+ 2r

dR(r)

dr
+

[
(kr)2 − l(l + 1)− r2 2m

h̄2 V (r)

]
R(r) = 0, k2 =

2mE

h̄2

Spherical Bessel & Neumann functions:

r2d
2R(r)

dr2
+ 2r

dR(r)

dr
+
[
(kr)2 − l(l + 1)

]
R(r) = 0→ R(r) = Ajl(kr) +Bnl(kr)

jl(x) = 2lxl
∞∑
s=0

(−1)s(s+ l)!

s!(2s+ 2l + 1)!
x2s nl(x) =

(−1)l+1

2lxl+1

∞∑
s=0

(−1)s(s− l)!
s!(2s− 2l)!

x2s

j0(x) =
sinx

x
j1(x) =

sinx

x2
− cosx

x
n0(x) = −cosx

x
n1(x) = −cosx

x2
− sinx

x

Trigonometric functions:

cos 2x = cos2 x− sin2 x, cos2 x+ sin2 x = 1, sin 2x = 2 sin x cosx

Euler: eiα = cosα + i sinα cosα = 1
2
(eiα + e−iα) sinα = 1

2i
(eiα − e−iα)

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
cosx =

∞∑
n=0

(−1)n
x2n

(2n)!

See next page!



Hydrogen-like atom wave-functions:

Ψnlml
(x) = Rnl(r)Ylml

(θ, ϕ) κ =
Z

na
a =

4πε0h̄
2

µe2
=

h̄

αµc

Rnl(r) =

√
(2κ)3

(n− l − 1)!

2n(n+ l)!
(2κr)le−κrL2l+1

n−l−1(2κr) Lqp(x) =

p∑
k=0

(−1k)
(p+ q)!xk

(p− k)!(q + k)!k!

R10 = 2

(
Z

a

)3/2

e−Zr/a R20 =
1√
2

(
Z

a

)3/2(
1− Zr

2a

)
e−Zr/2a R21 =

1

2
√

6

(
Z

a

)5/2

re−Zr/2a

Spherical spinors : (Yljm(Ω))ms = 〈Ω,ms|l, s =
1

2
, j,m〉c

|l, s =
1

2
, j = l ± 1

2
,m〉c = ±

√
l ±m+ 1

2

2l + 1
|l, s =

1

2
,ml = m− 1

2
,ms =

1

2
〉u

+

√
l ∓m+ 1

2

2l + 1
|l, s =

1

2
,ml = m+

1

2
,ms = −1

2
〉u

∫
dΩYljm(Ω)†Yl′j′m′(Ω) = δll′δjj′δmm′

For integrations in the complex plane:

Resf(z)
∣∣
z=z0

= lim
z→z0

1

(n− 1)!

( d
dz

)n−1
[(z−z0)nf(z)]

∮
C

dzf(z) = 2πi
n∑
j=1

Resf(z)
∣∣
z=zj

.

For integrations ∫ ∞
0

dxxne−x = n!

∫ ∞
0

dxxne−ax =
n!

an+1

Transition probability

Pfi(t, t0) =
1

h̄2

∣∣∣∣ ∫ t

t0

dt1〈φf |V̂S(t1)|φi〉ei(Ef−Ei)t1/h̄

∣∣∣∣2 +O(V 2
S )

Generalized angular momentum

[Ĵi, Ĵj] = ih̄

3∑
k=1

εijkĴk, [Ĵ2, Ĵi] = 0, Ĵ2|j,m〉 = h̄2j(j+1)|j,m〉, Ĵz|j,m〉 = h̄m|j,m〉

Ĵ± = Ĵx ± iĴy, Ĵ±|j,m〉 = h̄
√

(j ∓m)(j ±m+ 1)|j,m± 1〉

Hyperbolic functions

sinhx = 1
2
(ex − e−x) cosh x = 1

2
(ex + e−x)



Pauli spin-matrix identities

(~σ · A)(~σ ·B) = (A ·B)I2 + i(A×B) · ~σ

σjσk = δjkI2 + iεjklσl [σj, σk] = 2iεjklσl ~σ × ~σ = 2i~σ

Vector and Levi-Civita identities

(a× b)i = εijkajbk εijkεklm = δilδjm − δimδjl


