1. intermediate exam (1. välikoe): 4 problems, 4 hours
2. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be obtained through the minimal substitution principle,

$$
\hat{H}_{0}(\hat{\mathbf{p}}, \hat{\mathbf{x}}) \rightarrow \hat{H}_{0}(\hat{\mathbf{p}}-q \mathbf{A}(\mathbf{x}, t), \hat{\mathbf{x}})+q \varphi(\mathbf{x}, t)
$$

where $\mathbf{A}(\mathbf{x}, t)$ is the vector potential and $\varphi(\mathbf{x}, t)$ is the scalar potential, and q is the charge of the particle. Recall that $\hat{\mathbf{p}}=-i \hbar \nabla$.
a) Applying the minimal substitution principle to the Hamilton operator of a free spin- $\frac{1}{2}$ particle, $\hat{\mathbf{H}}=\frac{1}{2 m}(\vec{\sigma} \cdot \hat{\mathbf{p}})^{2}$, show that the system's Hamilton operator becomes

$$
\hat{\mathbf{H}}=\frac{\mathbf{I}_{2}}{2 m}(\hat{\mathbf{p}}-q \mathbf{A}(\mathbf{x}, t))^{2}-\frac{q \hbar}{2 m} \vec{\sigma} \cdot \mathbf{B}(\mathbf{x}, t)+q \varphi(\mathbf{x}, t) \mathbf{I}_{2} .
$$

Above, \mathbf{I}_{2} is the 2×2 unit matrix and $\mathbf{B}(\mathbf{x}, t)=\nabla \times \mathbf{A}(\mathbf{x}, t)$ is the magnetic field. Consult the collection of formulae in the end of the question paper for the needed Pauli spin-matrix identity.
b) Show that a gauge transformation

$$
\begin{aligned}
\tilde{\mathbf{A}}(\mathbf{x}, t) & =\mathbf{A}(\mathbf{x}, t)+\nabla f(\mathbf{x}, t) \\
\tilde{\varphi}(\mathbf{x}, t) & =\varphi(\mathbf{x}, t)-\frac{\partial f(\mathbf{x}, t))}{\partial t} \\
\tilde{\psi}(\mathbf{x}, t) & =e^{i \frac{q}{\hbar} f(\mathbf{x}, t)} \psi(\mathbf{x}, t)
\end{aligned}
$$

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

$$
\hat{\mathbf{H}}(\tilde{\mathbf{A}}, \tilde{\varphi}) \tilde{\psi}=i \hbar \frac{\partial \tilde{\psi}}{\partial t}
$$

2.a) The asymptotic $(r \rightarrow \infty)$ solution of the integral equation for potential scattering is known to be

$$
\Psi_{\mathbf{k}_{\mathbf{i}}}(\mathbf{r})=\Phi_{\mathbf{k}_{\mathbf{i}}}(\mathbf{r})-\frac{e^{ \pm i k r}}{r} \frac{1}{4 \pi} \int d^{3} r^{\prime} e^{\mp i \mathbf{k}_{\mathbf{f}} \cdot \mathbf{r}^{\prime}} U\left(\mathbf{r}^{\prime}\right) \Psi_{\mathbf{k}_{\mathbf{i}}}\left(\mathbf{r}^{\prime}\right),
$$

where $U(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}), \mathbf{k}_{\mathbf{i}}=k \hat{\mathbf{e}}_{z}, \mathbf{k}_{\mathbf{f}}=k \hat{\mathbf{e}}_{\mathbf{r}}, k^{2}=2 \mu E / \hbar^{2}$, and $\Phi_{\mathbf{k}_{\mathbf{i}}}(\mathbf{r})=(2 \pi)^{-3 / 2} e^{i \mathbf{k}_{\mathbf{i}} \cdot \mathbf{r}}$. Identify the scattering amplitude $f_{k}(\theta, \varphi)$ in the above expression and explain in one sentence why we should choose the upper signs in the exponents. Then derive the Born approximation for the scattering amplitude $f_{B}(\theta, \phi)$.
b) Using the result which you obtained above, compute the scattering amplitude $f_{B}(\theta, \phi)$ and the differential cross-section $d \sigma / d \Omega$ in the Born approximation for a radially symmetric Yukawa potential

$$
V(r)=V_{0} \frac{e^{-\kappa r}}{r},
$$

where V_{0} and $\kappa>0$ are constants.
c) Show explicitly how your result for $d \sigma / d \Omega$ depends on the scattering angle θ and on the energy of the collision. Sketch $d \sigma / d \Omega$ as a function of θ, both at the small-energy limit $E \ll \frac{\hbar^{2} \kappa^{2}}{2 \mu}$ and at the high-energy limit $E \gg \frac{\hbar^{2} \kappa^{2}}{2 \mu}$. According to your result, what happens to the backward scattering cross section at high energies?
3. Let's consider the scattering off a delta-function shell potential

$$
V(r)=\alpha \delta(r-a),
$$

where a and α are constants, in terms of the partial wave analysis. The scattering amplitude and the partial wave amplitudes are known to be

$$
f_{k}(\theta)=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) f_{l}(k) P_{l}(\cos \theta), \quad f_{l}(k)=e^{i \delta_{l}(k)} \sin \delta_{l}(k) .
$$

Note also that the delta function above applies only to the radial disctance r but not to the angles θ, φ.
a) Starting from the stationary radial Schrödinger equation (see the collection of formulae), compute the s-wave phase shift $\delta_{0}(k)$. Express your final result for $\tan \delta_{0}(k)$ in terms of basic trigonometric functions and the dimensionless variable $\beta \equiv \frac{2 m \alpha a}{\hbar^{2}}$. You can use (without deriving it) the fact that the discontinuity of the 1st derivatives of $R(r)$ at $r=a$ is given by $R^{\prime}(a+\epsilon)-R^{\prime}(a-\epsilon)=\frac{\beta}{a} R(a)$, where $\epsilon \rightarrow 0_{+}$.
b) Compute the s-wave contribution to the total cross section in the low-energy limit, $k a \ll 1$. Express your result in terms of the constants β and a.
c) Using the exact result which you obtained in the item (a) above, explain briefly when resonant scattering in the s-wave takes place, and write down an equation from which we could (through numerical solution) obtain the value of the energy at which such a resonant scattering happens.
4. Let's put a spinless Hydrogen atom into a weak time-dependent external electric field, which points into the y direction and vanishes asymptotically in time. Let's suppose this gives rise to a perturbation potential

$$
\hat{V}_{S}(t)=C \frac{\hat{y}}{\left(t^{2}+\tau_{1}^{2}\right)\left(t^{2}+\tau_{2}^{2}\right)},
$$

where C and $\tau_{2}>\tau_{1}>0$ are real constants. Note that \hat{y} above is the y-coordinate operator (and not a unit vector).
a) Using lowest-order time-dependent perturbation theory, find the selection rules for n, l and m in transitions from the ground state $|1,0,0\rangle$ to any of the excited states. The collection of formulae is most likely again useful.
b) Calculate the probability of a transition from the ground state to a 2 p -state $|2,1,1\rangle$ during an infinitely long period of time (set $t_{0} \rightarrow-\infty$ and $t \rightarrow \infty$). In doing the residue integrals, you should explain in sufficient detail why you choose the particular half-plane for closing the integration path. Express the final result in terms of the constants C, τ_{1}, and τ_{2}, and the Bohr radius and Hydrogen eigenenergies.

Useful(?) formulas and equations, for any of the problems:

Spherical coordinates and spherical harmonics:

$$
\begin{gathered}
\mathbf{r}=(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) \quad \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{1}{\hbar^{2} r^{2}} \hat{L}^{2} \\
\int d^{3} r=\int_{0}^{\infty} d r r^{2} \int_{4 \pi} d \Omega=\int_{0}^{\infty} d r r^{2} \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \varphi=\int_{0}^{\infty} d r r^{2} \int_{-1}^{1} d(\cos \theta) \int_{0}^{2 \pi} d \varphi \\
\hat{L}^{2} Y_{l m}(\theta, \varphi)=\hbar^{2} l(l+1) Y_{l m}(\theta, \varphi) \quad \hat{L}_{z} Y_{l m}(\theta, \varphi)=\hbar m Y_{l m}(\theta, \varphi) \\
\hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \quad \int d \Omega Y_{l^{\prime} m^{\prime}}^{*}(\theta, \varphi) Y_{l m}(\theta, \varphi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
Y_{l m}(\theta, \varphi)=(-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} P_{l}^{|m|}(\cos \theta) e^{i m \varphi} \quad Y_{l,-m}(\theta, \varphi)=(-1)^{m} Y_{l, m}^{*}(\theta, \varphi) \\
P_{l}^{k}(z)=\left(1-z^{2}\right)^{k / 2} \frac{d^{k}}{d z^{k}} P_{l}(z) \quad P_{l}(z)=\frac{1}{2^{l} l!} \frac{d^{l}}{d z^{l}}\left(z^{2}-1\right)^{l} \\
Y_{20}(\theta, \varphi)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \quad Y_{2 \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{15}{8 \pi}} \cos \theta \sin \theta e^{ \pm i \varphi} \quad Y_{2 \pm 2}(\theta, \varphi) \sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \varphi}
\end{gathered}
$$

Stationary Schrödinger equation, the radial part:

$$
r^{2} \frac{d^{2} R(r)}{d r^{2}}+2 r \frac{d R(r)}{d r}+\left[(k r)^{2}-l(l+1)-r^{2} \frac{2 m}{\hbar^{2}} V(r)\right] R(r)=0, \quad k^{2}=\frac{2 m E}{\hbar^{2}}
$$

$\underline{\text { Spherical Bessel \& Neumann functions: }}$

$$
\begin{gathered}
r^{2} \frac{d^{2} R(r)}{d r^{2}}+2 r \frac{d R(r)}{d r}+\left[(k r)^{2}-l(l+1)\right] R(r)=0 \rightarrow \quad R(r)=A j_{l}(k r)+B n_{l}(k r) \\
j_{l}(x)=2^{l} x^{l} \sum_{s=0}^{\infty} \frac{(-1)^{s}(s+l)!}{s!(2 s+2 l+1)!} x^{2 s}
\end{gathered} \quad n_{l}(x)=\frac{(-1)^{l+1}}{2^{l} x^{l+1}} \sum_{s=0}^{\infty} \frac{(-1)^{s}(s-l)!}{s!(2 s-2 l)!} x^{2 s} .
$$

Trigonometric functions:

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x, \quad \cos ^{2} x+\sin ^{2} x=1, \quad \sin 2 x=2 \sin x \cos x
$$

Euler: $e^{i \alpha}=\cos \alpha+i \sin \alpha \quad \cos \alpha=\frac{1}{2}\left(e^{i \alpha}+e^{-i \alpha}\right) \quad \sin \alpha=\frac{1}{2 i}\left(e^{i \alpha}-e^{-i \alpha}\right)$

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

$$
\begin{gathered}
\Psi_{n l m_{l}}(\mathbf{x})=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi) \quad \kappa=\frac{Z}{n a} \quad a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{\mu e^{2}}=\frac{\hbar}{\alpha \mu c} \\
R_{n l}(r)=\sqrt{(2 \kappa)^{3} \frac{(n-l-1)!}{2 n(n+l)!}}(2 \kappa r)^{l} e^{-\kappa r} L_{n-l-1}^{2 l+1}(2 \kappa r) \quad L_{p}^{q}(x)=\sum_{k=0}^{p}\left(-1^{k}\right) \frac{(p+q)!x^{k}}{(p-k)!(q+k)!k!} \\
R_{10}=2\left(\frac{Z}{a}\right)^{3 / 2} e^{-Z r / a} \quad R_{20}=\frac{1}{\sqrt{2}}\left(\frac{Z}{a}\right)^{3 / 2}\left(1-\frac{Z r}{2 a}\right) e^{-Z r / 2 a} \quad R_{21}=\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a}\right)^{5 / 2} r e^{-Z r / 2 a}
\end{gathered}
$$

$$
\text { Spherical spinors : } \quad\left(\mathcal{Y}_{l j m}(\Omega)\right)_{m_{s}}=\left\langle\Omega, m_{s} \mid l, s=\frac{1}{2}, j, m\right\rangle_{c}
$$

$$
\begin{gathered}
\left|l, s=\frac{1}{2}, j=l \pm \frac{1}{2}, m\right\rangle_{c}= \pm \sqrt{\frac{l \pm m+\frac{1}{2}}{2 l+1}}\left|l, s=\frac{1}{2}, m_{l}=m-\frac{1}{2}, m_{s}=\frac{1}{2}\right\rangle_{u} \\
+\sqrt{\frac{l \mp m+\frac{1}{2}}{2 l+1}}\left|l, s=\frac{1}{2}, m_{l}=m+\frac{1}{2}, m_{s}=-\frac{1}{2}\right\rangle_{u} \\
\int d \Omega \mathcal{Y}_{l j m}(\Omega)^{\dagger} \mathcal{Y}_{l^{\prime} j^{\prime} m^{\prime}}(\Omega)=\delta_{l l^{\prime}} \delta_{j j^{\prime}} \delta_{m m^{\prime}}
\end{gathered}
$$

For integrations in the complex plane:

$\left.\operatorname{Res} f(z)\right|_{z=z_{0}}=\lim _{z \rightarrow z_{0}} \frac{1}{(n-1)!}\left(\frac{d}{d z}\right)^{n-1}\left[\left(z-z_{0}\right)^{n} f(z)\right] \quad \oint_{C} d z f(z)=\left.2 \pi i \sum_{j=1}^{n} \operatorname{Res} f(z)\right|_{z=z_{j}}$.

For integrations

$$
\int_{0}^{\infty} d x x^{n} e^{-x}=n!\quad \int_{0}^{\infty} d x x^{n} e^{-a x}=\frac{n!}{a^{n+1}}
$$

Transition probability

$$
\left.P_{f i}\left(t, t_{0}\right)=\frac{1}{\hbar^{2}}\left|\int_{t_{0}}^{t} d t_{1}\left\langle\phi_{f}\right| \hat{V}_{S}\left(t_{1}\right)\right| \phi_{i}\right\rangle\left. e^{i\left(E_{f}-E_{i}\right) t_{1} / \hbar}\right|^{2}+\mathcal{O}\left(V_{S}^{2}\right)
$$

Generalized angular momentum

$$
\begin{gathered}
{\left[\hat{J}_{i}, \hat{J}_{j}\right]=i \hbar \sum_{k=1}^{3} \epsilon_{i j k} \hat{J}_{k}, \quad\left[\hat{\mathbf{J}}^{2}, \hat{J}_{i}\right]=0, \quad \hat{\mathbf{J}}^{2}|j, m\rangle=\hbar^{2} j(j+1)|j, m\rangle, \quad \hat{J}_{z}|j, m\rangle=\hbar m|j, m\rangle} \\
\hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y}, \quad \hat{J}_{ \pm}|j, m\rangle=\hbar \sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle
\end{gathered}
$$

Hyperbolic functions

$$
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) \quad \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

$\underline{\text { Pauli spin-matrix identities }}$

$$
\begin{gathered}
(\vec{\sigma} \cdot \mathbf{A})(\vec{\sigma} \cdot \mathbf{B})=(\mathbf{A} \cdot \mathbf{B}) \mathbf{I}_{2}+i(\mathbf{A} \times \mathbf{B}) \cdot \vec{\sigma} \\
\sigma_{j} \sigma_{k}=\delta_{j k} \mathbf{I}_{2}+i \epsilon_{j k l} \sigma_{l} \quad\left[\sigma_{j}, \sigma_{k}\right]=2 i \epsilon_{j k l} \sigma_{l} \quad \vec{\sigma} \times \vec{\sigma}=2 i \vec{\sigma}
\end{gathered}
$$

Vector and Levi-Civita identities

$$
(\mathbf{a} \times \mathbf{b})_{i}=\epsilon_{i j k} a_{j} b_{k} \quad \epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
$$

