FYST530 Quantum Mechanics 11 4.5.2012

2. exam (2. vélikoe): 4 problems, 4 hours

Regarding all problems:
Consult the collection of formulae in the end of the problem sheet!

1. As you remember, a rotation of a state vector — formulated in terms of the standard
Euler angles «, # and v — is caused by the operator

2.

D(a, B,7) = e e i emin):

Let’s consider a one-electron system where the orbital angular momentum L = 0.
Suppose that the system is originally in a state which is an eigenstate of the squared
total angular momentum J? and where the z-component of the electron’s spin is up,
—1—’—;. What is the state of the system after the above rotation? Express your result in
the basis |j, m) and in terms of coefficients functions which depend on «, § and ~. In
such rotated state, what is the probability for finding the electron still with spin up?

(a)

Using the Wigner-Eckart theorem, show that for a vector operator V, we have

(&jm|V - J|¢jm)

e T

(&m|V|gm') =

As an application, let’s consider the Zeeman effect on the hydrogen energy levels
in the following. Let the perturbation potential be

A B . N

where B is the magnitude of the weak magnetic field which is pointing into the
z direction, [ is the Bohr magneton, L is the orbital angular momentum and S
is the spin-angular momentum.

We wish to apply the above result below. For this, we should show first that the
operator A . .

M=L+2S
is a vector operator. Explain, without doing the calculation, how you would show
that M indeed is a vector operator.

Applying the result you derived in the item (a) above, compute then the energy
corrections A R

AEY = (nlsjm|Hg|nlsjm).
What is the energy-level splitting for the state nsi: i.e. when [ =0 and j = %7

Sketch a figure of the splitting, mark the relevant qu2antum numbers in the figure.



3. For a three-dimensional system, where one fermion is in a harmonic potential

1 1
V(x) = §mw2x2 = §mw2(x2 +y® + 2%),

It is known that for such a system

ﬁ(l)lnxa Ny, Nz, 52) = En’n:r; Ny, Nz, Sz>;

where the eigenenergies are ¢, = hw(n + %), with n = n, + n, + n. and where

Ng, Ny, N, = 0,1,2,... and s, is the z-component of the particle’s spin.

Let us then consider N noninteracting identical spm—% fermions moving in the po-

tential V' (x) above. The Hamilton operator of the N-fermion system is thus

(a) Starting from the general Fock-space form of a 1-particle operator and using the
1-particle states |ng,ny,n.,s.) and their quantum numbers, derive the Fock-

space expression of the H for this system. Express H in terms of the particle

number operators and the eigenenergies ¢,.

(b) Form the ground state of this system for N = 8. Draw a diagram of the 1-particle
energy levels and in the figure specify the quantum numbers of the occupied 1-

particle states in such a ground state.

(c) Express the ground state |F') of the system explicitly as a Fock state in the
occupation number representation, when N = 8. Express the state |F') also in

terms of creation operators and the vacuum |0).

(d) Using the Fock-space form of H which you derived in the item (a) above, compute

H |F') explicitly for the ground state |F") for N = 8.

(e) Using the the Fock-space forms of H and the total number operator N and
the anticommutation relations for the annihilation and creation operators, show
that [H, N] = 0. What does this result indicate and what is the physical reason

for it?



4.

(a)

Substituting an ansatz ,
V() = u(p)e i

into the Dirac equation
(thy"0, — me)¥(z) = 0,

and using the Clifford algebra for the gamma-matrices, show that the Dirac
equation has both positive-energy and negative-energy solutions. Which are the
allowed values of energy?

Starting from the Dirac equation, and using an ansatz

vy =i (U )

show that at the non-relativistic limit the upper 2-component spinors 1), (x)
for the positive-energy solutions fulfill the Schrédinger equation while the lower
spinors v;(x) vanish. Use the Dirac-Pauli representation here.



Collection of formulae:

Spherical coordinates and spherical harmonics:
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Transition probability, lowest order, ¢ # f:
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Hydrogen-like atom wave-functions:
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Spherical Bessel & Neumann functions:
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For integrations:

o " —aw n! > a? T ) 1 d \n-1 "
/0 drz"e™ = —, /_ dre """ = \/g, Resf(2)|,_, = Zh_{glom(a) [(z=20)" f(2)]

j{ dzf(z) = QWiiResf(z)‘Z:Z,
C = !

Trigonometry: cos 2z = cos® & — sin’ x, cos’z +sin®x =1

Angular momentum:

F25,my = B3 + Vlj,m), .|, m) = hml|j,m)
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Pauli spin matrices:

(01 (0 (10
2=\ 10 =i 0 2= 0 -1

[03,05] = 2ieipon {05, 05} = 20515

— - -,

(G-@)(F-0) = (@ D)1y +i(@x D) &

Wignert-Eckart theorem:

‘ A . 1 . o . .
(EFm TP jm) = ——— (jkma|jki'm'). (€5 |]TM]|€5)
27" +1

where

1 A e .
V27 + 1 > (€imulT0 [gma) (kmag |k m)

mi,ma,q’

(€N

SU(2) tensor operator:

[T = TP [ T = VE(k+ 1) = g(q £ DT,
where ¢ refers to the spherical components, which for a vector operator are

. 1 . . . .
Vi :_E(%"i_i‘/g;)a Vo=V. Va=+



Spherical unit vectors:

& ie,), éo=é,

. 1
€11 = :FE(

Scalar products in spherical basis: A-B=—-A,1B_1 — A 1B, + AyBy

Fermionic operators in the Fock space:

aylning .. 1, .Y = (=1)Z0=1 ™ nny .0, )

allmng...0,...) = (=) 2= 0y, .. 1, .. )
{opa} =0 {df,a,} =0,

V — E T
= auau
n

Fock space operators:

l\:>|>—l

F= Z(u|f|y>aLaV F= Z pp'|glvy')al, L,a,,/al,

JTRZ JTATS

Relativistic theory:

metric tensor g, = diag(1, —1, -1, —1) = ¢g"
scalar products a - b = a,b"
4-vectors: zt = (ct,x), p* = (E/c,p), A* = (gp/c, A)

derivatives: 9, = 52 = (12, V), and 9" = ;-

~ fan cot’ 2z,

Clifford algebra for the Dirac gamma-matrices: {7#,7"} = 2¢""1,4

Dirac-Pauli representation:

1 0 , 0 ot
0 __ 2 T
7‘(0—12> 7‘(—&0)

Some more Taylor series expansions:

1 1 1
\/1+x:1+§x—§x2+... 1(1+x)—x—2x2+—x3+...



