
FYST530 Quantum Mechanics II

2. exam (2. välikoe): 4 problems, 4 hours

4.5.2012

Regarding all problems:
Consult the collection of formulae in the end of the problem sheet!

1. As you remember, a rotation of a state vector – formulated in terms of the standard
Euler angles α, β and γ – is caused by the operator

D̂(α, β, γ) = e−
i
~αĴze−

i
~βĴye−

i
~γĴz

Let’s consider a one-electron system where the orbital angular momentum L = 0.
Suppose that the system is originally in a state which is an eigenstate of the squared
total angular momentum J2 and where the z-component of the electron’s spin is up,
+~

2
. What is the state of the system after the above rotation? Express your result in

the basis |j,m〉 and in terms of coefficients functions which depend on α, β and γ. In
such rotated state, what is the probability for finding the electron still with spin up?

2. (a) Using the Wigner-Eckart theorem, show that for a vector operator V̂, we have

〈ξjm|V̂|ξjm′〉 =
〈ξjm|V̂ · Ĵ|ξjm〉

~2j(j + 1)
〈ξjm|Ĵ|ξjm′〉

As an application, let’s consider the Zeeman effect on the hydrogen energy levels
in the following. Let the perturbation potential be

ĤB =
βB

~
(L̂z + 2Ŝz)

where B is the magnitude of the weak magnetic field which is pointing into the
z direction, β is the Bohr magneton, L̂ is the orbital angular momentum and Ŝ
is the spin-angular momentum.

(b) We wish to apply the above result below. For this, we should show first that the
operator

M̂ = L̂ + 2Ŝ

is a vector operator. Explain, without doing the calculation, how you would show
that M̂ indeed is a vector operator.

(c) Applying the result you derived in the item (a) above, compute then the energy
corrections

∆Enlj
B = 〈nlsjm|ĤB|nlsjm〉.

(d) What is the energy-level splitting for the state ns 1
2

i.e. when l = 0 and j = 1
2
?

Sketch a figure of the splitting, mark the relevant quantum numbers in the figure.



3. For a three-dimensional system, where one fermion is in a harmonic potential

V (x) =
1

2
mω2x2 =

1

2
mω2(x2 + y2 + z2),

the one-particle Hamilton operator is

Ĥ(1) =
p̂2

2m
+ V (x̂).

It is known that for such a system

Ĥ(1)|nx, ny, nz, sz〉 = εn|nx, ny, nz, sz〉,

where the eigenenergies are εn = ~ω(n + 3
2
), with n = nx + ny + nz and where

nx, ny, nz = 0, 1, 2, . . . and sz is the z-component of the particle’s spin.

Let us then consider N noninteracting identical spin-1
2
fermions moving in the po-

tential V (x) above. The Hamilton operator of the N -fermion system is thus

Ĥ =
N∑
i=1

Ĥ
(1)
i =

N∑
i=1

(
p̂2
i

2m
+ V (x̂i)

)
.

(a) Starting from the general Fock-space form of a 1-particle operator and using the
1-particle states |nx, ny, nz, sz〉 and their quantum numbers, derive the Fock-

space expression of the Ĥ for this system. Express Ĥ in terms of the particle
number operators and the eigenenergies εn.

(b) Form the ground state of this system for N = 8. Draw a diagram of the 1-particle
energy levels and in the figure specify the quantum numbers of the occupied 1-
particle states in such a ground state.

(c) Express the ground state |F 〉 of the system explicitly as a Fock state in the
occupation number representation, when N = 8. Express the state |F 〉 also in
terms of creation operators and the vacuum |0〉.

(d) Using the Fock-space form of Ĥ which you derived in the item (a) above, compute
Ĥ|F 〉 explicitly for the ground state |F 〉 for N = 8.

(e) Using the the Fock-space forms of Ĥ and the total number operator N̂ and
the anticommutation relations for the annihilation and creation operators, show
that [Ĥ, N̂ ] = 0. What does this result indicate and what is the physical reason
for it?



4. (a) Substituting an ansatz

Ψ(x) = u(p)e−
i
~p·x

into the Dirac equation

(i~γµ∂µ −mc)Ψ(x) = 0,

and using the Clifford algebra for the gamma-matrices, show that the Dirac
equation has both positive-energy and negative-energy solutions. Which are the
allowed values of energy?

(b) Starting from the Dirac equation, and using an ansatz

Ψ(x) = e−
i
~Et

(
ψu(x)
ψl(x)

)
,

show that at the non-relativistic limit the upper 2-component spinors ψu(x)
for the positive-energy solutions fulfill the Schrödinger equation while the lower
spinors ψl(x) vanish. Use the Dirac-Pauli representation here.



Collection of formulae:

Spherical coordinates and spherical harmonics:

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
)− 1

~2r2
L̂2 d3r = r2drdΩ = r2dr sin θdθdϕ

∫
dΩ = 4π

L̂2Ylm(θ, ϕ) = ~2l(l + 1)Ylm(θ, ϕ) L̂zYlm(θ, ϕ) = ~mYlm(θ, ϕ)

L̂2 = −~2
[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

] ∫
dΩY ∗l′m′(θ, ϕ)Ylm(θ, ϕ) = δll′δmm′

Ylm(θ, ϕ) = (−1)
m+|m|

2

√
2l + 1

4π

√
(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ Yl,−m(θ, ϕ) = (−1)mY ∗l,m(θ, ϕ)

P k
l (z) = (1− z2)k/2 d

k

dzk
Pl(z) Pl(z) =

1

2ll!

dl

dzl
(z2 − 1)l

Y00(θ, ϕ) =
1√
4π

Y10(θ, ϕ) =

√
3

4π
cos θ Y1±1(θ, ϕ) = ∓

√
3

8π
sin θe±iϕ

Y20(θ, ϕ) =

√
5

16π

(
3 cos2 θ − 1

)
Y2±1(θ, ϕ) = ∓

√
15

8π
cos θ sin θe±iϕ Y2±2(θ, ϕ)

√
15

32π
sin2 θe±2iϕ

Transition probability, lowest order, i 6= f :

Pfi(t, t0) ≡ |〈φf |ψ(t)〉|2 ≈ 1

~2

∣∣∣∣ ∫ t

t0

dt1〈φf |V̂S(t1)|φi〉ei(Ef−Ei)t1/~
∣∣∣∣2

Hydrogen-like atom wave-functions:

Ψnlm(x) = Rnl(r)Ylm(θ, ϕ) κ =
Z

na
a =

4πε0~2

µe2

Rnl(r) =

√
(2κ)3

(n− l − 1)!

2n(n+ l)!
(2κr)le−κrL2l+1

n−l−1(2κr) Lqp(x) =

p∑
k=0

(−1k)
(p+ q)!xk

(p− k)!(q + k)!k!

R10 = 2

(
Z

a

)3/2

e−Zr/a R20 =
1√
2

(
Z

a

)3/2(
1− Zr

2a

)
e−Zr/2a R21 =

1

2
√

6

(
Z

a

)5/2

re−Zr/2a

Spherical Bessel & Neumann functions:

r2
d2R(r)

dr2
+ 2r

dR(r)

dr
+
[
(kr)2 − l(l + 1)

]
R(r) = 0 → R(r) = Ajl(kr) +Bnl(kr)

jl(x) = 2lxl
∞∑
s=0

(−1)s(s+ l)!

s!(2s+ 2l + 1)!
x2s nl(x) =

(−1)l+1

2lxl+1

∞∑
s=0

(−1)s(s− l)!
s!(2s− 2l)!

x2s

j0(x) =
sinx

x
j1(x) =

sinx

x2
− cosx

x
n0(x) = −cosx

x
n1(x) = −cosx

x2
− sinx

x



For integrations:∫ ∞
0

dxxne−ax =
n!

an+1
,

∫ ∞
−∞

dxe−ax
2

=

√
π

a
, Resf(z)

∣∣
z=z0

= lim
z→z0

1

(n− 1)!

( d
dz

)n−1
[(z−z0)nf(z)]

∮
C

dzf(z) = 2πi
n∑
j=1

Resf(z)
∣∣
z=zj

.

Trigonometry: cos 2x = cos2 x− sin2 x, cos2 x+ sin2 x = 1

Angular momentum:

Ĵ2|j,m〉 = ~2j(j + 1)|j,m〉, Ĵz|j,m〉 = ~m|j,m〉

Ĵ± = Ĵx ± iĴy, Ĵ±|j,m〉 = ~
√

(j ∓m)(j ±m+ 1)|j,m± 1〉

[Ĵi, Ĵj] = i~
3∑

k=1

εijkĴk, [Ĵ2, Ĵi] = 0

Power series:

ex =
∞∑
n=0

xn

n!
cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

Pauli spin matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
[σi, σj] = 2iεijkσk {σi, σj} = 2δij12

(~σ · ~a)(~σ ·~b) = (~a ·~b)12 + i(~a×~b) · ~σ

Wignert-Eckart theorem:

〈ξ′j′m′|T̂ (k)
q |ξjm〉 =

1√
2j′ + 1

u〈jkmq|jkj′m′〉c 〈ξ′j′||T (k)||ξj〉

where

〈ξ′j′||T (k)||ξj〉 ≡ 1√
2j′ + 1

∑
m1,m2,q′

〈ξ′j′m1|T̂ (k)
q′ |ξjm2〉〈jkm2q

′|jkj′m1〉

SU(2) tensor operator:

[Ĵz, T̂
(k)
q ] = qT̂ (k)

q [Ĵ±, T̂
(k)
q ] =

√
k(k + 1)− q(q ± 1)T̂

(k)
q±1,

where q refers to the spherical components, which for a vector operator are

V̂+1 = − 1√
2

(V̂x + iV̂y), V̂0 = V̂z V̂−1 = +
1√
2

(V̂x − iV̂y)



Spherical unit vectors:

ê±1 = ∓ 1√
2

(êx ± iêy), ê0 = êz

Scalar products in spherical basis: A ·B = −A+1B−1 − A−1B+1 + A0B0

Fermionic operators in the Fock space:

aν |n1n2 . . . 1ν . . . 〉 = (−1)
∑ν−1
µ=1 nµ |n1n2 . . . 0ν . . . 〉

a†ν |n1n2 . . . 0ν . . . 〉 = (−1)
∑ν−1
µ=1 nµ |n1n2 . . . 1ν . . . 〉

{aµ, aν} = 0 {a†µ, aν} = δµν

N̂ =
∑
µ

a†µaµ

Fock space operators:

F̂ =
∑
µ,ν

〈µ|f̂ |ν〉a†µaν F̂ =
1

2

∑
µ,µ′,ν,ν′

〈µµ′|ĝ|νν ′〉a†µa
†
µ′aν′aν

Relativistic theory:

metric tensor gµν = diag(1,−1,−1,−1) = gµν

scalar products a · b = aµb
µ

4-vectors: xµ = (ct,x), pµ = (E/c,p), Aµ = (ϕ/c,A)

derivatives: ∂µ = ∂
∂xµ

= (1
c
∂
∂t
,∇), and ∂µ = ∂

∂xµ

Clifford algebra for the Dirac gamma-matrices: {γµ, γν} = 2gµν14

Dirac-Pauli representation:

γ0 =

(
12 0
0 −12

)
γi =

(
0 σi

−σi 0

)
Some more Taylor series expansions:

√
1 + x = 1 +

1

2
x− 1

8
x2 + . . . ln(1 + x) = x− 1

2
x2 +

1

3
x3 + . . .


