2. exam (2. välikoe): 4 problems, 4 hours

Regarding all problems:

Consult the collection of formulae in the end of the problem sheet!

1. As you remember, a rotation of a state vector - formulated in terms of the standard Euler angles α, β and γ - is caused by the operator

$$
\hat{D}(\alpha, \beta, \gamma)=e^{-\frac{i}{\hbar} \alpha \hat{J}_{z}} e^{-\frac{i}{\hbar} \beta \hat{J}_{y}} e^{-\frac{i}{\hbar} \gamma \hat{J}_{z}}
$$

Let's consider a one-electron system where the orbital angular momentum $\mathbf{L}=0$. Suppose that the system is originally in a state which is an eigenstate of the squared total angular momentum \mathbf{J}^{2} and where the z-component of the electron's spin is up, $+\frac{\hbar}{2}$. What is the state of the system after the above rotation? Express your result in the basis $|j, m\rangle$ and in terms of coefficients functions which depend on α, β and γ. In such rotated state, what is the probability for finding the electron still with spin up?
2. (a) Using the Wigner-Eckart theorem, show that for a vector operator $\hat{\mathbf{V}}$, we have

$$
\langle\xi j m| \hat{\mathbf{V}}\left|\xi j m^{\prime}\right\rangle=\frac{\langle\xi j m| \hat{\mathbf{V}} \cdot \hat{\mathbf{J}}|\xi j m\rangle}{\hbar^{2} j(j+1)}\langle\xi j m| \hat{\mathbf{J}}\left|\xi j m^{\prime}\right\rangle
$$

As an application, let's consider the Zeeman effect on the hydrogen energy levels in the following. Let the perturbation potential be

$$
\hat{H}_{B}=\frac{\beta B}{\hbar}\left(\hat{L}_{z}+2 \hat{S}_{z}\right)
$$

where B is the magnitude of the weak magnetic field which is pointing into the z direction, β is the Bohr magneton, $\hat{\mathbf{L}}$ is the orbital angular momentum and $\hat{\mathbf{S}}$ is the spin-angular momentum.
(b) We wish to apply the above result below. For this, we should show first that the operator

$$
\hat{\mathbf{M}}=\hat{\mathbf{L}}+2 \hat{\mathbf{S}}
$$

is a vector operator. Explain, without doing the calculation, how you would show that \hat{M} indeed is a vector operator.
(c) Applying the result you derived in the item (a) above, compute then the energy corrections

$$
\Delta E_{B}^{n l j}=\langle n l s j m| \hat{H}_{B}|n l s j m\rangle .
$$

(d) What is the energy-level splitting for the state $n s_{\frac{1}{2}}$ i.e. when $l=0$ and $j=\frac{1}{2}$? Sketch a figure of the splitting, mark the relevant quantum numbers in the figure.
3. For a three-dimensional system, where one fermion is in a harmonic potential

$$
V(\mathbf{x})=\frac{1}{2} m \omega^{2} \mathbf{x}^{2}=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

the one-particle Hamilton operator is

$$
\hat{H}^{(1)}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(\hat{\mathbf{x}}) .
$$

It is known that for such a system

$$
\hat{H}^{(1)}\left|n_{x}, n_{y}, n_{z}, s_{z}\right\rangle=\epsilon_{n}\left|n_{x}, n_{y}, n_{z}, s_{z}\right\rangle,
$$

where the eigenenergies are $\epsilon_{n}=\hbar \omega\left(n+\frac{3}{2}\right)$, with $n=n_{x}+n_{y}+n_{z}$ and where $n_{x}, n_{y}, n_{z}=0,1,2, \ldots$ and s_{z} is the z-component of the particle's spin.
Let us then consider N noninteracting identical spin- $\frac{1}{2}$ fermions moving in the potential $V(\mathbf{x})$ above. The Hamilton operator of the N-fermion system is thus

$$
\hat{H}=\sum_{i=1}^{N} \hat{H}_{i}^{(1)}=\sum_{i=1}^{N}\left(\frac{\hat{\mathbf{p}}_{i}^{2}}{2 m}+V\left(\hat{\mathbf{x}}_{i}\right)\right) .
$$

(a) Starting from the general Fock-space form of a 1-particle operator and using the 1-particle states $\left|n_{x}, n_{y}, n_{z}, s_{z}\right\rangle$ and their quantum numbers, derive the Fockspace expression of the \hat{H} for this system. Express \hat{H} in terms of the particle number operators and the eigenenergies ϵ_{n}.
(b) Form the ground state of this system for $N=8$. Draw a diagram of the 1-particle energy levels and in the figure specify the quantum numbers of the occupied 1particle states in such a ground state.
(c) Express the ground state $|F\rangle$ of the system explicitly as a Fock state in the occupation number representation, when $N=8$. Express the state $|F\rangle$ also in terms of creation operators and the vacuum $|0\rangle$.
(d) Using the Fock-space form of \hat{H} which you derived in the item (a) above, compute $\hat{H}|F\rangle$ explicitly for the ground state $|F\rangle$ for $N=8$.
(e) Using the the Fock-space forms of \hat{H} and the total number operator \hat{N} and the anticommutation relations for the annihilation and creation operators, show that $[\hat{H}, \hat{N}]=0$. What does this result indicate and what is the physical reason for it?
4. (a) Substituting an ansatz

$$
\Psi(x)=u(p) e^{-\frac{i}{\hbar} p \cdot x}
$$

into the Dirac equation

$$
\left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \Psi(x)=0
$$

and using the Clifford algebra for the gamma-matrices, show that the Dirac equation has both positive-energy and negative-energy solutions. Which are the allowed values of energy?
(b) Starting from the Dirac equation, and using an ansatz

$$
\Psi(x)=e^{-\frac{i}{\hbar} E t}\binom{\psi_{u}(\mathbf{x})}{\psi_{l}(\mathbf{x})}
$$

show that at the non-relativistic limit the upper 2-component spinors $\psi_{u}(\mathbf{x})$ for the positive-energy solutions fulfill the Schrödinger equation while the lower spinors $\psi_{l}(\mathbf{x})$ vanish. Use the Dirac-Pauli representation here.

Collection of formulae:

Spherical coordinates and spherical harmonics:

$$
\begin{gathered}
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{1}{\hbar^{2} r^{2}} \hat{L}^{2} \quad d^{3} r=r^{2} d r d \Omega=r^{2} d r \sin \theta d \theta d \varphi \quad \int d \Omega=4 \pi \\
\hat{L}^{2} Y_{l m}(\theta, \varphi)=\hbar^{2} l(l+1) Y_{l m}(\theta, \varphi) \quad \hat{L}_{z} Y_{l m}(\theta, \varphi)=\hbar m Y_{l m}(\theta, \varphi) \\
\hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \quad \int d \Omega Y_{l^{\prime} m^{\prime}}^{*}(\theta, \varphi) Y_{l m}(\theta, \varphi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
Y_{l m}(\theta, \varphi)=(-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} P_{l}^{|m|}(\cos \theta) e^{i m \varphi} \quad Y_{l,-m}(\theta, \varphi)=(-1)^{m} Y_{l, m}^{*}(\theta, \varphi) \\
P_{l}^{k}(z)=\left(1-z^{2}\right)^{k / 2} \frac{d^{k}}{d z^{k}} P_{l}(z) \quad P_{l}(z)=\frac{1}{2^{l} l!} \frac{d^{l}}{d z^{l}}\left(z^{2}-1\right)^{l} \\
Y_{00}(\theta, \varphi)=\frac{1}{\sqrt{4 \pi}} \quad Y_{10}(\theta, \varphi)=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad Y_{1 \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \varphi}
\end{gathered}
$$

$Y_{20}(\theta, \varphi)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \quad Y_{2 \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{15}{8 \pi}} \cos \theta \sin \theta e^{ \pm i \varphi} \quad Y_{2 \pm 2}(\theta, \varphi) \sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \varphi}$

Transition probability, lowest order, $i \neq f$:

$$
\left.P_{f i}\left(t, t_{0}\right) \equiv\left|\left\langle\phi_{f} \mid \psi(t)\right\rangle\right|^{2} \approx \frac{1}{\hbar^{2}}\left|\int_{t_{0}}^{t} d t_{1}\left\langle\phi_{f}\right| \hat{V}_{S}\left(t_{1}\right)\right| \phi_{i}\right\rangle\left. e^{i\left(E_{f}-E_{i}\right) t_{1} / \hbar}\right|^{2}
$$

Hydrogen-like atom wave-functions:

$$
\Psi_{n l m}(\mathbf{x})=R_{n l}(r) Y_{l m}(\theta, \varphi) \quad \kappa=\frac{Z}{n a} \quad a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{\mu e^{2}}
$$

$$
R_{n l}(r)=\sqrt{(2 \kappa)^{3} \frac{(n-l-1)!}{2 n(n+l)!}}(2 \kappa r)^{l} e^{-\kappa r} L_{n-l-1}^{2 l+1}(2 \kappa r) \quad L_{p}^{q}(x)=\sum_{k=0}^{p}\left(-1^{k}\right) \frac{(p+q)!x^{k}}{(p-k)!(q+k)!k!}
$$

$$
R_{10}=2\left(\frac{Z}{a}\right)^{3 / 2} e^{-Z r / a} \quad R_{20}=\frac{1}{\sqrt{2}}\left(\frac{Z}{a}\right)^{3 / 2}\left(1-\frac{Z r}{2 a}\right) e^{-Z r / 2 a} \quad R_{21}=\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a}\right)^{5 / 2} r e^{-Z r / 2 a}
$$

Spherical Bessel \& Neumann functions:

$$
\begin{gathered}
r^{2} \frac{d^{2} R(r)}{d r^{2}}+2 r \frac{d R(r)}{d r}+\left[(k r)^{2}-l(l+1)\right] R(r)=0 \quad \rightarrow \quad R(r)=A j_{l}(k r)+B n_{l}(k r) \\
j_{l}(x)=2^{l} x^{l} \sum_{s=0}^{\infty} \frac{(-1)^{s}(s+l)!}{s!(2 s+2 l+1)!} x^{2 s} \quad n_{l}(x)=\frac{(-1)^{l+1}}{2^{l} x^{l+1}} \sum_{s=0}^{\infty} \frac{(-1)^{s}(s-l)!}{s!(2 s-2 l)!} x^{2 s} \\
j_{0}(x)=\frac{\sin x}{x} \quad j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x} \quad n_{0}(x)=-\frac{\cos x}{x} \quad n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x}
\end{gathered}
$$

$\underline{\text { For integrations: }}$

$$
\begin{gathered}
\int_{0}^{\infty} d x x^{n} e^{-a x}=\frac{n!}{a^{n+1}}, \quad \int_{-\infty}^{\infty} d x e^{-a x^{2}}=\sqrt{\frac{\pi}{a}},\left.\quad \operatorname{Res} f(z)\right|_{z=z_{0}}=\lim _{z \rightarrow z_{0}} \frac{1}{(n-1)!}\left(\frac{d}{d z}\right)^{n-1}\left[\left(z-z_{0}\right)^{n} f(z)\right] \\
\oint_{C} d z f(z)=\left.2 \pi i \sum_{j=1}^{n} \operatorname{Res} f(z)\right|_{z=z_{j}}
\end{gathered}
$$

Trigonometry: $\quad \cos 2 x=\cos ^{2} x-\sin ^{2} x, \quad \cos ^{2} x+\sin ^{2} x=1$

Angular momentum:

$$
\begin{gathered}
\hat{\mathbf{J}}^{2}|j, m\rangle=\hbar^{2} j(j+1)|j, m\rangle, \quad \hat{J}_{z}|j, m\rangle=\hbar m|j, m\rangle \\
\hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y}, \quad \hat{J}_{ \pm}|j, m\rangle=\hbar \sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle \\
{\left[\hat{J}_{i}, \hat{J}_{j}\right]=i \hbar \sum_{k=1}^{3} \epsilon_{i j k} \hat{J}_{k}, \quad\left[\hat{\mathbf{J}}^{2}, \hat{J}_{i}\right]=0}
\end{gathered}
$$

Power series:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

Pauli spin matrices:

$$
\begin{gathered}
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
{\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \quad\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} \mathbf{1}_{2}} \\
(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=(\vec{a} \cdot \vec{b}) \mathbf{1}_{2}+i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}
\end{gathered}
$$

Wignert-Eckart theorem:

$$
\left\langle\xi^{\prime} j^{\prime} m^{\prime}\right| \hat{T}_{q}^{(k)}|\xi j m\rangle=\frac{1}{\sqrt{2 j^{\prime}+1}} u\left\langle j k m q \mid j k j^{\prime} m^{\prime}\right\rangle_{c}\left\langle\xi^{\prime} j^{\prime}\left\|T^{(k)}\right\| \xi j\right\rangle
$$

where

$$
\left\langle\xi^{\prime} j^{\prime}\right|\left|T^{(k)}\right||\xi j\rangle \equiv \frac{1}{\sqrt{2 j^{\prime}+1}} \sum_{m_{1}, m_{2}, q^{\prime}}\left\langle\xi^{\prime} j^{\prime} m_{1}\right| \hat{T}_{q^{\prime}}^{(k)}\left|\xi j m_{2}\right\rangle\left\langle j k m_{2} q^{\prime} \mid j k j^{\prime} m_{1}\right\rangle
$$

$\underline{S U(2) \text { tensor operator: }}$

$$
\left[\hat{J}_{z}, \hat{T}_{q}^{(k)}\right]=q \hat{T}_{q}^{(k)} \quad\left[\hat{J}_{ \pm}, \hat{T}_{q}^{(k)}\right]=\sqrt{k(k+1)-q(q \pm 1)} \hat{T}_{q \pm 1}^{(k)}
$$

where q refers to the spherical components, which for a vector operator are

$$
\hat{V}_{+1}=-\frac{1}{\sqrt{2}}\left(\hat{V}_{x}+i \hat{V}_{y}\right), \quad \hat{V}_{0}=\hat{V}_{z} \quad \hat{V}_{-1}=+\frac{1}{\sqrt{2}}\left(\hat{V}_{x}-i \hat{V}_{y}\right)
$$

Spherical unit vectors:

$$
\hat{e}_{ \pm 1}=\mp \frac{1}{\sqrt{2}}\left(\hat{e}_{x} \pm i \hat{e}_{y}\right), \quad \hat{e}_{0}=\hat{e}_{z}
$$

Scalar products in spherical basis: $\mathbf{A} \cdot \mathbf{B}=-A_{+1} B_{-1}-A_{-1} B_{+1}+A_{0} B_{0}$
$\underline{\text { Fermionic operators in the Fock space: }}$

$$
\begin{gathered}
a_{\nu}\left|n_{1} n_{2} \ldots 1_{\nu} \ldots\right\rangle=(-1)^{\sum_{\mu=1}^{\nu-1} n_{\mu}}\left|n_{1} n_{2} \ldots 0_{\nu} \ldots\right\rangle \\
a_{\nu}^{\dagger}\left|n_{1} n_{2} \ldots 0_{\nu} \ldots\right\rangle=(-1)^{\sum_{\mu=1}^{\nu-1} n_{\mu}}\left|n_{1} n_{2} \ldots 1_{\nu} \ldots\right\rangle \\
\left\{a_{\mu}, a_{\nu}\right\}=0 \quad\left\{a_{\mu}^{\dagger}, a_{\nu}\right\}=\delta_{\mu \nu} \\
\hat{N}=\sum_{\mu} a_{\mu}^{\dagger} a_{\mu}
\end{gathered}
$$

Fock space operators:

$$
\hat{F}=\sum_{\mu, \nu}\langle\mu| \hat{f}|\nu\rangle a_{\mu}^{\dagger} a_{\nu} \quad \hat{F}=\frac{1}{2} \sum_{\mu, \mu^{\prime}, \nu, \nu^{\prime}}\left\langle\mu \mu^{\prime}\right| \hat{g}\left|\nu \nu^{\prime}\right\rangle a_{\mu}^{\dagger} a_{\mu^{\prime}}^{\dagger} a_{\nu^{\prime}} a_{\nu}
$$

Relativistic theory:
metric tensor $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)=g^{\mu \nu}$
scalar products $a \cdot b=a_{\mu} b^{\mu}$
4 -vectors: $x^{\mu}=(c t, \mathbf{x}), p^{\mu}=(E / c, \mathbf{p}), A^{\mu}=(\varphi / c, \mathbf{A})$
derivatives: $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla\right)$, and $\partial^{\mu}=\frac{\partial}{\partial x_{\mu}}$
Clifford algebra for the Dirac gamma-matrices: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbf{1}_{4}$
Dirac-Pauli representation:

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbf{1}_{2} & 0 \\
0 & -\mathbf{1}_{2}
\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

Some more Taylor series expansions:

$$
\sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots \quad \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\ldots
$$

