Regarding all problems:

Remember the collection of formulae in the end of the problem sheet.

1. (a) The asymptotic $(r \rightarrow \infty)$ solution of the integral equation for potential scattering is known to be

$$
\Psi_{\mathbf{k}_{\mathbf{1}}}(\mathbf{r})=\Phi_{\mathbf{k}_{\mathbf{i}}}(\mathbf{r})-\frac{e^{ \pm i k r}}{r} \frac{1}{4 \pi} \int d^{3} r^{\prime} e^{\mp i \mathbf{k}_{\mathbf{f}} \cdot \mathbf{r}^{\prime}} U\left(\mathbf{r}^{\prime}\right) \Psi_{\mathbf{k}_{\mathbf{i}}}\left(\mathbf{r}^{\prime}\right)
$$

where $U(\mathbf{r})=\frac{2 \mu}{\hbar^{2}} V(\mathbf{r}), \mathbf{k}_{\mathbf{i}}=k \hat{\mathbf{e}}_{z}, \mathbf{k}_{\mathbf{f}}=k \hat{\mathbf{e}}_{\mathbf{r}}, k^{2}=2 \mu E / \hbar^{2}$. Using this, derive the Born approximation for the scattering amplitude $f_{B}(\theta, \phi)$.
(b) Compute the scattering amplitude $f_{B}(\theta, \phi)$ and the differential cross-section $d \sigma / d \Omega$ in the Born approximation for a radially symmetric delta-function potential

$$
V(r)=\alpha \delta(r-a)
$$

where a and α are constants. Note that this delta-function above applies only to the radial distance r but not to the angles θ, φ. Express your final results in terms of the dimensionless constant $\beta \equiv \frac{2 \mu \alpha a}{\hbar^{2}}$, and show the energy and scattering angle dependencies of your result explicitly.
(c) Sketch the behaviour of $d \sigma / d \Omega$ as a function of the scattering angle in the case $k a=3 \pi$.
2. A spinless hydrogen atom, which is in its ground state 1 s (i.e. $|1,0,0\rangle$), is put into a weak time-dependent external electric field, which points into the z direction:

$$
\mathbf{E}(t, \mathbf{r})=\frac{C \hat{\mathbf{e}}_{\mathbf{z}}}{t^{2}+\tau^{2}}
$$

where C and $\tau>0$ are constants. This gives rise to a perturbation potential

$$
\hat{V}(t)=C \frac{e \hat{z}}{t^{2}+\tau^{2}},
$$

where e denotes the electron charge.
(a) Using lowest-order time-dependent perturbation theory, find the selection rules for the quantum numbers n, l and m in transitions from the ground state.
(b) Calculate the probability of transition from the ground state 1 s to the state 2 p during an infinitely long period of time, setting $t_{0} \rightarrow-\infty$ and $t \rightarrow \infty$.
3. (a) Using the Wigner-Eckart theorem, show that for a vector operator $\hat{\mathbf{V}}$ we have

$$
\langle\xi j m| \hat{\mathbf{V}}\left|\xi j m^{\prime}\right\rangle=\frac{\langle\xi j m| \hat{\mathbf{V}} \cdot \hat{\mathbf{J}}|\xi j m\rangle}{\hbar^{2} j(j+1)}\langle\xi j m| \hat{\mathbf{J}}\left|\xi j m^{\prime}\right\rangle
$$

As an application, let's consider the Zeeman effect on the hydrogen energy levels in the following. Let the perturbation potential be

$$
\hat{H}_{B}=\frac{\beta B}{\hbar}\left(\hat{L}_{z}+2 \hat{S}_{z}\right)
$$

where B is the magnitude of the weak magnetic field which is pointing into the z direction, β is the Bohr magneton, $\hat{\mathbf{L}}$ is the orbital angular momentum and $\hat{\mathbf{S}}$ is the spin angular momentum.
(b) We wish to apply the above result below. For this, we should show first that the operator

$$
\hat{\mathbf{M}}=\hat{\mathbf{L}}+2 \hat{\mathbf{S}}
$$

is a vector operator. Explain how you would show that \hat{M} indeed is a vector operator. You do not have to verify the required identities here but write them down in the Cartesian components \hat{M}_{x}, \hat{M}_{y} and \hat{M}_{z}, so that it becomes clear what you would compute, given more time.
(c) Applying perturbation theory in the basis $|n l s j m\rangle$, compute the first-order corrections to the Hydrogen atom's energy levels caused by \hat{H}_{B}.
(d) What is the energy-level splitting for the state $n s_{\frac{1}{2}}$ i.e. when $l=0$ and $j=\frac{1}{2}$? Sketch a figure of the splitting, and mark the relevant quantum numbers in the figure.
4. Let's consider the Fock space formulation of the angular momentum operator in a system of identical fermions.
(a) Angular momentum is an additive quantity, so that the generic form of the Fock space 1-particle operator (see the collection of formulae) holds. Using this, show (in sufficient detail) that the total angular momentum operator can be written as

$$
\hat{\overrightarrow{\mathcal{J}}}=\sum_{\alpha} \sum_{j} \sum_{m, m^{\prime}} a_{\alpha j m^{\prime}}^{\dagger} a_{\alpha j m}\left\langle\alpha j m^{\prime}\right| \hat{\vec{j}}|\alpha j m\rangle,
$$

where $\hat{\vec{j}}=\left(\hat{j_{x}}, \hat{j_{y}}, \hat{j_{z}}\right)$ is the angular momentum operator for a 1-particle state, and α stands for all remaining quantum numbers needed to spesify the basis.
(b) Explain briefly why we should expect that $\hat{\vec{J}}$ commutes with the total number-of-particles operator \hat{N}.
(c) Show that indeed $[\hat{\vec{J}}, \hat{N}]=0$.
(d) Let's then consider the following 2-particle state in the Fock space:

$$
\left|F^{(2)}\right\rangle=C \sum_{m_{1}, m_{2}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} J M\right\rangle a_{\alpha_{2} j_{2} m_{2}}^{\dagger} a_{\alpha_{1} j_{1} m_{1}}^{\dagger}|0\rangle
$$

where $\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} J M\right\rangle$ is a Clebsch-Gordan coefficient and C is a normalization constant. Show that $\left|F^{(2)}\right\rangle$ is an eigenstate of $\hat{\mathcal{J}}_{z}$ with an eigenvalue $\hbar M$.
5. Starting from the Lorentz-covariant form of the Dirac equation (DE) for a spin- $\frac{1}{2}$ particle in classical electromagnetic field,

$$
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu}-q A_{\mu}(x)\right)-m c\right] \Psi(x)=0
$$

show that for the stationary case with time-independent weak electromagnetic field the nonrelativistic (NR) limit of this equation is the Pauli equation,

$$
\left[\frac{1}{2 m}(\hat{\mathbf{p}}-q \mathbf{A}(\mathbf{x}))^{2} \mathbf{1}_{2}-\frac{q \hbar}{2 m} \vec{\sigma} \cdot \mathbf{B}(\mathbf{x})+q \varphi(\mathbf{x}) \mathbf{1}_{2}\right] \psi_{N R}(\mathbf{x})=E_{N R} \psi_{N R}(\mathbf{x})
$$

Hints: First bring the DE into the form $i \hbar \partial_{0} \Psi=\ldots$, then use the ansatz

$$
\Psi(x)=e^{-\frac{i}{\hbar} E t}\binom{\psi_{u}(\mathbf{x})}{\psi_{l}(\mathbf{x})}
$$

and the Dirac-Pauli representation. Recall also that $A^{\mu}=\left(\frac{\varphi}{c}, \mathbf{A}\right)$ and $\hat{\mathbf{p}}=-i \hbar \nabla$.

Collection of formulae:

Spherical coordinates and spherical harmonics:

$$
\begin{gathered}
\mathbf{r}=(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) \quad \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{1}{\hbar^{2} r^{2}} \hat{L}^{2} \\
\int d^{3} r=\int_{0}^{\infty} d r r^{2} \int_{4 \pi} d \Omega=\int_{0}^{\infty} d r r^{2} \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \varphi=\int_{0}^{\infty} d r r^{2} \int_{-1}^{1} d(\cos \theta) \int_{0}^{2 \pi} d \varphi \\
\hat{L}^{2} Y_{l m}(\theta, \varphi)=\hbar^{2} l(l+1) Y_{l m}(\theta, \varphi) \quad \hat{L}_{z} Y_{l m}(\theta, \varphi)=\hbar m Y_{l m}(\theta, \varphi) \\
\hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \quad \int d \Omega Y_{l^{\prime} m^{\prime}}^{*}(\theta, \varphi) Y_{l m}(\theta, \varphi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
Y_{l m}(\theta, \varphi)=(-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} P_{l}^{|m|}(\cos \theta) e^{i m \varphi} \quad Y_{l,-m}(\theta, \varphi)=(-1)^{m} Y_{l, m}^{*}(\theta, \varphi) \\
P_{l}^{k}(z)=\left(1-z^{2}\right)^{k / 2} \frac{d^{k}}{d z^{k}} P_{l}(z) \quad P_{l}(z)=\frac{1}{2^{l} l!} \frac{d^{l}}{d z^{l}}\left(z^{2}-1\right)^{l} \\
Y_{00}(\theta, \varphi)=\frac{1}{\sqrt{4 \pi}} \quad Y_{10}(\theta, \varphi)=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad Y_{1 \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \varphi}
\end{gathered}
$$

$$
Y_{20}(\theta, \varphi)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \quad Y_{2 \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{15}{8 \pi}} \cos \theta \sin \theta e^{ \pm i \varphi} \quad Y_{2 \pm 2}(\theta, \varphi) \sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \varphi}
$$

Stationary Schrödinger equation, the radial part:

$$
r^{2} \frac{d^{2} R(r)}{d r^{2}}+2 r \frac{d R(r)}{d r}+\left[(k r)^{2}-l(l+1)-r^{2} \frac{2 m}{\hbar^{2}} V(r)\right] R(r)=0, \quad k^{2}=\frac{2 m E}{\hbar^{2}}
$$

Spherical Bessel \& Neumann functions:

$$
\begin{gathered}
r^{2} \frac{d^{2} R(r)}{d r^{2}}+2 r \frac{d R(r)}{d r}+\left[(k r)^{2}-l(l+1)\right] R(r)=0 \rightarrow \quad R(r)=A j_{l}(k r)+B n_{l}(k r) \\
j_{l}(x)=2^{l} x^{l} \sum_{s=0}^{\infty} \frac{(-1)^{s}(s+l)!}{s!(2 s+2 l+1)!} x^{2 s}
\end{gathered} \quad n_{l}(x)=\frac{(-1)^{l+1}}{2^{l} x^{l+1}} \sum_{s=0}^{\infty} \frac{(-1)^{s}(s-l)!}{s!(2 s-2 l)!} x^{2 s} .
$$

Transition probability, lowest order, $i \neq f$:

$$
\left.P_{f i}\left(t, t_{0}\right) \equiv\left|\left\langle\phi_{f} \mid \psi(t)\right\rangle\right|^{2} \approx \frac{1}{\hbar^{2}}\left|\int_{t_{0}}^{t} d t_{1}\left\langle\phi_{f}\right| \hat{V}_{S}\left(t_{1}\right)\right| \phi_{i}\right\rangle\left. e^{i\left(E_{f}-E_{i}\right) t_{1} / \hbar}\right|^{2}
$$

$\underline{\text { Power series, Taylor expansions: }}$

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots \quad \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\ldots
\end{gathered}
$$

For integrations:

$$
\begin{gathered}
\int_{0}^{\infty} d x x^{n} e^{-a x}=\frac{n!}{a^{n+1}}, \quad \int_{-\infty}^{\infty} d x e^{-a x^{2}}=\sqrt{\frac{\pi}{a}} \\
\left.\operatorname{Res} f(z)\right|_{z=z_{0}}=\lim _{z \rightarrow z_{0}} \frac{1}{(n-1)!}\left(\frac{d}{d z}\right)^{n-1}\left[\left(z-z_{0}\right)^{n} f(z)\right] \quad \oint_{C} d z f(z)=\left.2 \pi i \sum_{j=1}^{n} \operatorname{Res} f(z)\right|_{z=z_{j}}
\end{gathered}
$$

Hydrogen-like atom wave-functions:

$$
\begin{gathered}
\Psi_{n l m}(\mathbf{x})=R_{n l}(r) Y_{l m}(\theta, \varphi) \quad \kappa=\frac{Z}{n a} \quad a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{\mu e^{2}} \\
R_{n l}(r)=\sqrt{(2 \kappa)^{3} \frac{(n-l-1)!}{2 n(n+l)!}}(2 \kappa r)^{l} e^{-\kappa r} L_{n-l-1}^{2 l+1}(2 \kappa r) \quad L_{p}^{q}(x)=\sum_{k=0}^{p}\left(-1^{k}\right) \frac{(p+q)!x^{k}}{(p-k)!(q+k)!k!} \\
R_{10}=2\left(\frac{Z}{a}\right)^{3 / 2} e^{-Z r / a} \quad R_{20}=\frac{1}{\sqrt{2}}\left(\frac{Z}{a}\right)^{3 / 2}\left(1-\frac{Z r}{2 a}\right) e^{-Z r / 2 a} \quad R_{21}=\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a}\right)^{5 / 2} r e^{-Z r / 2 a}
\end{gathered}
$$

Spherical spinors:

$$
\left(\mathcal{Y}_{l j m}(\Omega)\right)_{m_{s}}=\left\langle\Omega, m_{s} \mid l, s=\frac{1}{2}, j, m\right\rangle_{c} \quad \int d \Omega \mathcal{Y}_{l j m}(\Omega)^{\dagger} \mathcal{Y}_{l^{\prime} j^{\prime} m^{\prime}}(\Omega)=\delta_{l l^{\prime}} \delta_{j j^{\prime}} \delta_{m m^{\prime}}
$$

Trigonometric functions:

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x, \quad \cos ^{2} x+\sin ^{2} x=1 \quad \sin 2 x=2 \sin x \cos x
$$

Euler: $e^{i \alpha}=\cos \alpha+i \sin \alpha \quad \cos \alpha=\frac{1}{2}\left(e^{i \alpha}+e^{-i \alpha}\right) \quad \sin \alpha=\frac{1}{2 i}\left(e^{i \alpha}-e^{-i \alpha}\right)$
Angular momentum:

$$
\begin{gathered}
\hat{\mathbf{J}}^{2}|j, m\rangle=\hbar^{2} j(j+1)|j, m\rangle, \quad \hat{J}_{z}|j, m\rangle=\hbar m|j, m\rangle \\
\hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y}, \quad \hat{J}_{ \pm}|j, m\rangle=\hbar \sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle \\
{\left[\hat{J}_{i}, \hat{J}_{j}\right]=i \hbar \sum_{k=1}^{3} \epsilon_{i j k} \hat{J}_{k}, \quad\left[\hat{\mathbf{J}}^{2}, \hat{J}_{i}\right]=0}
\end{gathered}
$$

$\underline{\text { Pauli spin matrices: }}$

$$
\begin{gathered}
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
{\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \quad\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} \mathbf{1}_{2}} \\
(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=(\vec{a} \cdot \vec{b}) \mathbf{1}_{2}+i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}
\end{gathered}
$$

Wignert-Eckart theorem:

$$
\left\langle\xi^{\prime} j^{\prime} m^{\prime}\right| \hat{T}_{q}^{(k)}|\xi j m\rangle=\frac{1}{\sqrt{2 j^{\prime}+1}} u\left\langle j k m q \mid j k j^{\prime} m^{\prime}\right\rangle_{c}\left\langle\xi^{\prime} j^{\prime}\left\|T^{(k)}\right\| \xi j\right\rangle
$$

where

$$
\left\langle\xi^{\prime} j^{\prime}\right|\left|T^{(k)}\right||\xi j\rangle \equiv \frac{1}{\sqrt{2 j^{\prime}+\overline{1}}} \sum_{m_{1}, m_{2}, q^{\prime}}\left\langle\xi^{\prime} j^{\prime} m_{1}\right| \hat{T}_{q^{\prime}}^{(k)}\left|\xi j m_{2}\right\rangle\left\langle j k m_{2} q^{\prime} \mid j k j^{\prime} m_{1}\right\rangle
$$

$\underline{S U(2) \text { tensor operator: }}$

$$
\left[\hat{J}_{z}, \hat{T}_{q}^{(k)}\right]=q \hat{T}_{q}^{(k)} \quad\left[\hat{J}_{ \pm}, \hat{T}_{q}^{(k)}\right]=\sqrt{k(k+1)-q(q \pm 1)} \hat{T}_{q \pm 1}^{(k)}
$$

where q refers to the spherical components, which for a vector operator are

$$
\hat{V}_{+1}=-\frac{1}{\sqrt{2}}\left(\hat{V}_{x}+i \hat{V}_{y}\right), \quad \hat{V}_{0}=\hat{V}_{z} \quad \hat{V}_{-1}=+\frac{1}{\sqrt{2}}\left(\hat{V}_{x}-i \hat{V}_{y}\right)
$$

$\underline{\text { Spherical unit vectors: }}$

$$
\hat{e}_{ \pm 1}=\mp-\frac{1}{\sqrt{2}}\left(\hat{e}_{x} \pm i \hat{e}_{y}\right), \quad \hat{e}_{0}=\hat{e}_{z}
$$

Fermionic operators in the Fock space:

$$
\begin{aligned}
& a_{\nu}\left|n_{1} n_{2} \ldots 1_{\nu} \ldots\right\rangle=(-1)^{\sum_{\mu=1}^{\nu-1} n_{\mu}}\left|n_{1} n_{2} \ldots 0_{\nu} \ldots\right\rangle \\
& a_{\nu}^{\dagger}\left|n_{1} n_{2} \ldots 0_{\nu} \ldots\right\rangle=(-1)^{\sum_{\mu=1}^{\nu-1} n_{\mu}}\left|n_{1} n_{2} \ldots 1_{\nu} \ldots\right\rangle \\
& \left\{a_{\mu}, a_{\nu}\right\}=0 \quad\left\{a_{\mu}^{\dagger}, a_{\nu}\right\}=\delta_{\mu \nu} \quad n_{\mu}=a_{\mu}^{\dagger} a_{\mu}
\end{aligned}
$$

Fock space operators:

$$
\hat{F}=\sum_{\mu, \nu}\langle\mu| \hat{f}|\nu\rangle a_{\mu}^{\dagger} a_{\nu} \quad \hat{F}=\frac{1}{2} \sum_{\mu, \mu^{\prime}, \nu, \nu^{\prime}}\left\langle\mu \mu^{\prime}\right| \hat{g}\left|\nu \nu^{\prime}\right\rangle a_{\mu}^{\dagger} a_{\mu^{\prime}}^{\dagger} a_{\nu^{\prime}} a_{\nu}
$$

Relativistic theory:
metric tensor $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)=g^{\mu \nu}$
scalar products $a \cdot b=a_{\mu} b^{\mu}$
4-vectors: $x^{\mu}=(c t, \mathbf{x}), p^{\mu}=(E / c, \mathbf{p}), A^{\mu}=(\varphi / c, \mathbf{A})$
derivatives: $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla\right)$, and $\partial^{\mu}=\frac{\partial}{\partial x_{\mu}}$
Dirac gamma-matrices: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} 1_{4}$
Dirac-Pauli representation:

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbf{1}_{2} & 0 \\
0 & -\mathbf{1}_{2}
\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

