
FYST530 Quantum Mechanics II 15.01.2010 

Final exam (tentti): 5 problems, 4 hours 

Regarding all problems: 
Remember the collection of formulae in the end of the problem sheet. 

1. (a) The asymptotic ( r ~ oo) solution of the integral equation for potential scatter­
ing is known to be 

where U(r) = ~V(r), ki = kez, kr = ker, k2 = 2J.LEifi2 • Using this, derive the 
Born approximation for the scattering amplitude fB((), ¢). 

(b) Compute the scattering amplitude !B((), ¢) and the differential cross-section 
da I dr! in the Born approximation for a radially symmetric delta-function po­
tential 

V(r) = a8(r- a), 

where a and a are constants. Note that this delta-function above applies only 
to the radial distance r but not to the angles (), rp. Express your final results 
in terms of the dimensionless constant f3 2~~a , and show the energy and 
scattering angle dependencies of your result explicitly. 

(c) Sketch the behaviour of da I dr! as a function of the scattering angle in the case 
ka = 37r. 

2. A spinless hydrogen atom, which is in its ground state ls (i.e. II, 0, 0)), is put into a 
weak time-dependent external electric field, which points into the z direction: 

( ) 
Cez 

E t, r = 
2 2

, 
t +T 

where C and T > 0 are constants. This gives rise to a perturbation potential 

A ez 
V(t) = C 2 2 , 

t +T 

where e denotes the electron charge. 

(a) Using lowest-order time-dependent perturbation theory, find the selection rules 
for the quantum numbers n, l and m in transitions from the ground state. 

(b) Calculate the probability of transition from the ground state ls to the state 2p 
during an infinitely long period of time, setting t0 ~ -oo and t ~ oo. 



3. (a) Using the Wigner-Eckart theorem, show that for a vector operator V we have 

As an application, let's consider the Zeeman effect on the hydrogen energy levels 
in the following. Let the perturbation potential be 

where B is the magnitude of the weak magnetic field which is pointing into the 
z direction, f3 is the Bohr magneton, L is the orbital angular momentum and S 
is the spin angular momentum. 

(b) We wish to apply the above result below. For this, we should show first that the 
operator 

M=L+2S 
is a vector operator. Explain how you would show that M indeed is a vector 
operator. You do not have to verify the required identities here but write them 
down in the Cartesian components Mx, My and Mz, so that it becomes clear 
what you would compute, given more time. 

(c) Applying perturbation theory in the basis inlsjm), compute the first-order cor­
rections to the Hydrogen atom's energy levels caused by iiB. 

(d) What is the energy-level splitting for the state ns1 i.e. when l = 0 and j = ~? 
Sketch a figure of the splitting, and mark the relev~nt quantum numbers in the 
figure. 



J 

4. Let's consider the Fock space formulation of the angular momentum operator in a 
system of identical fermions. 

(a) Angular momentum is an additive quantity, so that the generic form of the Fock 
space 1-particle operator (see the collection of formulae) holds. Using this, show 
(in sufficient detail) that the total angular momentum operator can be written 
as 

J = L L L a~jm'aajm(ajm'i}lajm), 
a j m,m' 

~ 

where J = (j:,Jy,iz) is the angular momentum operator for a 1-particle state, 
and a stands for all remaining quantum numbers needed to spesify the basis. 

~ 

(b) Explain briefly why we should expect that J commutes with the total number­
of-particles operator fv. 

(c) Show that indeed [J, N] = 0. 

(d) Let's then consider the following 2-particle state in the Fock space: 

where (j1j 2m1m2 lj1]2JM) is a Clebsch-Gordan coefficient and Cis a normal­
ization constant. Show that IF(2)) is an eigenstate of jz with an eigenvalue liM. 

5. Starting from the Lorentz-covariant form of the Dirac equation (DE) for a spin-~ 
particle in classical electromagnetic field, 

[r~-'(ilia~-'- qA~-'(x))- mc]w(x) = o, 

show that for the stationary case with time-independent weak electromagnetic field 
the nonrelativistic (NR) limit of this equation is the Pauli equation, 

Hints: First bring the DE into the form ili80w = ... , then use the ansatz 

•T•( ) _ _ iEt ( '1/Ju(x) ) 
'J'X-en () '1/Jl X 

and the Dirac-Pauli representation. Recall also that A~-'=(!~, A) and p = -ih\l. 



Collection of formulae: 

Spherical coordinates and spherical harmonics: 

r = (r sin 0 cos cp, r sin 0 sin cp, r cos 0) 

J d3r = roo drr21 dn = (>0 drr2 r'lr dO sin 0 r'lr dcp = roo drr211 

d( cos 0) r'lr dcp 
Jo 47r Jo Jo Jo Jo -1 Jo 

f}Yzm(O, cp) = fi21(1 + 1)Yzm(O, cp) LzYzm(O, cp) = fimYzm(O, cp) 

y; (/} )=(-1)m~lmiJ21+1 (1-lmi)!P.Iml( ll) imrp 
lm u, cp 47r (1 + lml)! l cos u e 

( ) 
1 dl 2 l 

F1 z = 2l1! dzl(z -1) 

Yoo(O, cp) = . ~ Yio(O, cp) = {3 cosO 
v47r y4; 

Y20 (0,cp) = /5 (3cos20 -1) Y2±1(0,cp) = =f {15 cosOsinOe±irp yu;; yg; 

Stationary Schrodinger equation, the radial part: 

d2R(r) dR(r) [ 2m l r2 dr2 + 2r~ + (kr? -1(1 + 1)- r2 !i2 V(r) R(r) = 0, 

Spherical Bessel & Neumann functions: 

y; (0 (()) [15 sin2 oe±2irp 2±2 ' r y 3"2"; 

d2 R(r) dR(r) 2 
r2 + 2r-- + [(kr) -1(1 + 1)] R(r) = 0---+ R(r) = Ajz(kr) + Bnz(kr) 

dr2 dr 

. l l~ (-1)s(s+1)! 2s 

Jz(x) = 2 x ~ s!(2s + 21 + 1)!x 

. ( ) sinx Jo x = -­
x 

. ( ) sinx cosx 
)1 X=-----x2 x 

'ltansition probability, lowest order, i =I f: 

(-1)l+l 00 (-1) 8 (8 -1)! 
28 

nz(x) = 2lxl+1 ~ s!(2s- 21)! x 

cosx 
no(x) = --­

x 



Power series, Taylor expansions: 

X ~ Xn OO . 2n 00 2n+1 

e = ~-1 cosx= L(-1)n(x )I sinx= L(-1)n( x )I 
n=O n. n=O 2n . n=O 2n + 1 . 

. ~ 1 1 2 ( 1 2 1 3 v .1 -r x = 1 + 2x- 8x +... ln 1 + x) = x- 2x + 3x + ... 
For integrations: 

100 

dxxne-ax = a~~1 , 1: dxe-ax
2 

= If 
Resf(z)jz=zo = }_!_.~ (n~ 1)!(:)n-

1
[(z-zo)nf(z)] i dzf(z) = 2?ritResf(z)jz=z; 

c J=1 

Hydrogen-like atom wave-functions: 

Wnzm(x) = Rnz(r)Yim(O, <p) 
z 

fi, =­
na 

Rnz(r) = 
(n -l- 1)! 

(2K)3 (21ir)1 e-"r L 21+1 (2Kr) 
2n(n + l)! n-l-1 

p ( )' k 
q ( ) - ""'( k) p + q .X 

Lp X - ~ -1 (p- k)!(q + k)!k! 

RIO ~ 2 ( ~) 3/2 _-z,jo 

Spherical spinors: 

R2o = J_ (z)3/2 (1- Zr) e-Zr/2a 
J2 a 2a 

(Yljm(O))ms = (0, msll, s = ~,j, m)c 

Trigonometric functions: 

R = _1_ Z re-Zr/2a 
( )

5/2 

21 2v'6 a 

cos 2x = cos2 x - sin2 x, cos2 x + sin2 x = 1 sin 2x = 2 sin x cos x 

Euler: eia = cos a + i sin a 

Angular momentum: 

}±IJ, m) = nJ(j =t= m)(j ± m + 1)lj, m ± 1) 
3 

[Ji, Jj] = ifi L EijkJk, [J2
' Ji] = 0 

k=1 

Pauli spin matrices: 

(a . a) (a . b) = (a . b) 12 + i (a x b) . a 



Wignert-Eckart theorem: 

where 

SU(2) tensor operator: 

[J f'<k)] = qf'<k) z, q q 

where q refers to the spherical components, which for a vector operator are 

Spherical unit vectors: 

Scalar products in spherical basis: A· B = -A+lB-1- A_1B+l + A0B0 

Fermionic operators in the Fock space: 

t . 2::"-1 avJn1n2 ... Ov ... ) = ( -1) JL=l n~' Jn1n2 ... 1v ... ) 

{a~,av} = 0 {aL,av} =O~v n~ =aLa~ 

Fock space operators: 

~,v 

F = ~ 'L: (J-£JiJgJvv')aLa~,av'av 
~,~',v,v' 

Relativistic theory: 

metric tensor g~v = diag(1, -1, -1, -1) = g~v 
scalar products a· b =a~~ 

4-vectors: x~ = (ct, x), p~ = (Ejc, p), A~= ('P/c, A) 

derivatives: a~ = 8~~' = ( ~ ~, V), and a~ = 8~~' 
Dirac gamma-matrices: { ~~, '{} = 2g~v14 

Dirac-Pauli representation: 

t . 


