Quantum Mechanics II Mid-exam 2 17.12.2010

(You can answer in English or in Finnish.)

- 1. Give a brief description of the following notions:
  - a. Creation and annihilation operators
  - b. Minimal substitution
  - c. Lande's g-factor
  - d. Coupled basis of angular momenta
  - e. Polarization vector
- 2. The Hamilton operator of an atom is

$$H = H_0 + \varsigma \vec{L} \cdot \vec{S} + \mu_0 (\vec{L} + 2\vec{S}) \cdot \vec{B}.$$

- a. Describe briefly the origin of each term.
- b. In a strong magnetic field the atom is described mainly by

$$H_1 = H_0 + \mu_0(\vec{L} + 2\vec{S}) \cdot \vec{B}.$$

Show that the states  $|L Sm_L m_S\rangle$  are eigenstates of  $H_1$ .

- c. Consider  $\xi(r)\vec{L}\cdot\vec{S}$  as a small perturbation. Evaluate the effect of this perturbation to the energies of different eigenstates of  $H_1$ .
- d. Sketch the energy levels of the atomic state  ${}^{2}P_{3/2}$  under a strong magnetic field.
- 3.

a. Show that the Maxwell equations in vacuum,

$$\vec{\nabla} \cdot \vec{E} = 0$$
$$\vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t},$$

where  $\vec{E} = -\vec{\nabla}\varphi - \frac{\partial}{\partial t}\vec{A}$  and  $\vec{B} = \vec{\nabla} \times \vec{A}$ , are invariant under the gauge transformation

$$\vec{A} \rightarrow \vec{A} - \vec{\nabla} \Lambda, \ \varphi \rightarrow \varphi + \frac{\partial}{\partial t} \Lambda.$$

b. Show that this gauge invariance allows one to assume  $\vec{\nabla} \cdot \vec{A} = 0$ . c. Show that the electromagnetic field has only two possible polarization states. 4. In the case of a free one-electron atom, the operators  $H, \vec{J}^2, J_z$  and

$$K = \beta (1 + \vec{\Sigma} \cdot \vec{L})$$

have common eigenfunctions

$$\Psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}.$$

Here  $\Sigma^{i} = \sigma^{jk}$  (cyclically) and  $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$ .

a) Show that

$$K = \beta \left( \vec{\Sigma} \cdot \vec{J} - \frac{1}{2} \right)$$

and that the eigenvalues of K are  $\kappa = \pm (j + \frac{1}{2})$ .

b) Show that

$$\vec{L}^2 \psi_A = l_A (l_A + 1) \psi_{A,}$$
$$\vec{L}^2 \psi_B = l_B (l_B + 1) \psi_{B,}$$

where  $l_A = j + \frac{1}{2}$  and  $l_B = j - \frac{1}{2}$  in the case  $\kappa = (j + \frac{1}{2})$  and  $l_A = j - \frac{1}{2}$  and  $l_B = j + \frac{1}{2}$  in the case  $\kappa = -(j + \frac{1}{2})$ .