Quantum Mechanics II
Mid-exam
29.10.2010

1. Give a brief description of the following:
a. Heisenberg picture and Schrödinger picture
b. Accidental degeneracy
c. Infinitesimal generator
d. Irreducible representation
e. $|\alpha\rangle\langle\beta|$
2. Consider a particle with spin quantum number $s=1$. Ignore all spatial degrees of freedom and assume that the particle is subject to an external magnetic field $\boldsymbol{B}=\boldsymbol{B} \boldsymbol{u}_{\boldsymbol{x}}$. The Hamiltonian operator of the system is $H=g \boldsymbol{B} \cdot \boldsymbol{S}$.
a. Construct first the matrix elements of the ladder operators S_{+}and S_{-}in the $\left|1 m_{s}\right\rangle$-basis.
b. Derive then the expressions for the matrices S_{x}, S_{y} and S_{z} in the same basis.
c. If the particle is initially (at $t=0$) in the state $|11\rangle$, find the evolved state of the particle at times $t>0$.
d. What is the probability of finding the particle in the state $|1-1\rangle$ at different times?
3. Consider two tensor operators $T^{(k)}$ and $U^{(k)}$. Show that $\sum_{q=-k}^{k}(-1)^{q} T_{q}{ }^{(k)} U_{-q}{ }^{(k)}$ is a scalar operator. Show that in the case $k=1$ this quantity is the same as the normal scalar product of vectors.
4.

a. Show that the Pauli matrices
$\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
obey $\sigma_{i} \sigma_{k}=\delta_{i k}+i \varepsilon_{i k l} \sigma_{l}$.
b. Derive from this the commutation and anticommutation rules for the Pauli matrices.
c. Show that $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=\vec{a} \cdot \vec{b}+i \vec{\sigma} \cdot(\vec{a} \times \vec{b})$, where \vec{a} and \vec{b} are two vectors. Is this relation valid for any operators \vec{a} and \vec{b} ?
5.
a. Show that in the Heisenberg picture an operator A varies in time according to the equation

$$
\frac{d A(t)}{d t}=\frac{i}{\hbar}[H, A(t)] .
$$

b. The Hamiltonian of a system (an one-dimensional oscillator in en external electric field) is

$$
H=\frac{p(t)^{2}}{2 m}+\frac{1}{2} m \omega^{2} x(t)^{2}-e E x(t) .
$$

Calculate the equation of motion for the operators $p(t)$ and $x(t)$. Solve $p(t)$ and $x(t)$ in terms of $p(0)$ and $x(0)$.

35. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

$d_{m^{\prime}, m}^{j}=(-1)^{m-m^{\prime}} d_{m, m^{\prime}}^{j}=d_{-m,-m^{\prime}}^{j}$

$d_{3 / 2,3 / 2}^{3 / 2}=\frac{1+\cos \theta}{2} \cos \frac{\theta}{2}$.
$d_{3 / 2,1 / 2}^{3 / 2}=-\sqrt{3} \frac{1+\cos \theta}{2} \sin \frac{\theta}{2}$
$d_{3 / 2,-1 / 2}^{3 / 2}=\sqrt{3} \frac{1-\cos \theta}{2} \cos \frac{\theta}{2}$
$d_{2,2}^{2}=\left(\frac{1+\cos \theta}{2}\right)^{2}$
$d_{2,1}^{2}=-\frac{1+\cos \theta}{2} \sin \theta$
$d_{3 / 2,-3 / 2}^{3 / 2}=-\frac{1-\cos \theta}{2} \sin \frac{\theta}{2}$
$d_{2,0}^{2}=\frac{\sqrt{6}}{4} \sin ^{2} \theta$
$\dot{d}_{1 / 2,1 / 2}^{3 / 2}=\frac{3 \cos \theta-1}{2} \cos \frac{\theta}{2}$
$d_{1 / 2,-1 / 2}^{3 / 2}=-\frac{3 \cos \theta+1}{2} \sin \frac{\theta}{2}$
$d_{2,-1}^{2}=-\frac{1-\cos \theta}{2} \sin \theta$
$d_{2,-2}^{2}=\left(\frac{1-\cos \theta}{2}\right)^{2}$
$d_{1,1}^{2}=\frac{1+\cos \theta}{2}(2 \cos \theta-1)$
$d_{1,0}^{2}=-\sqrt{\frac{3}{2}} \sin \theta \cos \theta$
$d_{1,-1}^{2}=\frac{1-\cos \theta}{2}(2 \cos \theta+1) \quad d_{0,0}^{2}=\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)$

Figure 35.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 18 and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficte here have been calculated using computer programs written independently by Cohen and at LBNL.

