
FYST530 Quantum Mechanics II

1. intermediate exam (1. välikoe): 4 problems, 4 hours

15.03.2013

1. As you remember, in the quantum mechanical description of elastic scattering, we
aim at stationary wave functions which have the following asymptotic form

ψki
(r)

r→∞
=

1

(2π)3/2

(
eiki·r +

eikr

r
fki

(θ, ϕ)

)
where ki = kêz and k2 = 2µE/h̄2. We also recall that the implicit solution of the
stationary Schrodinger equation for the potential scattering can be written as

ψki
(r) = Φki

(r) +

∫
d3r′Gki

(r− r′)U(r′)ψki
(r′)

where

U(r) =
2µ

h̄2 V (r), Φki
(r) =

1

(2π)3/2
eiki·r, Gki

(r) = − 1

4π

eikr

r
,

and where the potential V (r) vanishes sufficiently quickly at large distances.

a) Using the information given above, show that the scattering amplitude beco-
mes

fki
(θ, ϕ) = −2π2

∫
d3r′Φ∗kf

(r′)U(r′)ψki
(r′),

where kf = kr/r = kêr.

b) Derive the Born series for the scattering amplitude and show that the Born
approximation for the scattering amplitude is

fB(θ, ϕ) = − 1

4π

2µ

h̄2

∫
d3r′e−i(kf−ki)·r′V (r′)

c) Compute the scattering amplitude fB(θ, ϕ) in the Born approximation for the
potential

V (r) =

{
V0, r ≤ a
0, r > a

where V0 is a constant. In the end, write your result in a form which shows
the dependence of the obtained scattering amplitude on the scattering angles
and energy.

d) Compute fB(θ, ϕ) for

∗ forward scattering at any energy

∗ backward scattering in the high-energy limit ka→∞
e) Compute the elastic total cross section in the low-energy limit (ka� 1).



2. Let’s consider scattering off a radially symmetric potential in terms of the
partial wave analysis. Let the potential be

V (r) =

{
∞, r ≤ a

αδ(r − b), r > a

where a, b (b > a) and α are constants. The scattering amplitude and the
partial wave amplitudes are known to be

fk(θ) =
1

k

∞∑
l=0

(2l + 1)fl(k)Pl(cos θ), fl(k) = eiδl(k) sin δl(k).

Note also that the delta function above applies only to the radial distance r
but not to the angles θ, ϕ.

a) Starting from the solutions of the stationary radial Schrödinger equation
(see the collection of formulae), compute the s-wave phase shift δ0(k)
at the low-energy limit where ka, kb � 1. (Note: apply this limit alrea-
dy when considering the continuity conditions!)
Express your final result for tan δ0(k) in terms of k, a, b and the dimen-
sionless variable β ≡ 2mαb

h̄2 . You can use (without deriving it) the fact
that the discontinuity of the 1st derivatives of R(r) at r = b is given by

R′(b+ ε)−R′(b− ε) = β
b
R(b), where ε→ 0+ and R′ ≡ dR(r)

dr
.

b) Let’s then set α = 0 for simplicity. Compute the s-wave contribution to
the total cross section in the low-energy limit.



3. Suppose that the Hamilton operator in the Schrödinger picture is

ĤS(t) = Ĥ0 + V̂S(t),

where Ĥ0 does not depend on time but V̂S does. In the interaction picture (I-
picture), the states and operators are defined in terms of the Schrödinger picture
as

|ψ(t)〉I ≡ e
i
h̄
Ĥ0t|ψ(t)〉S ÂI(t) ≡ e

i
h̄
Ĥ0tÂS(t)e−

i
h̄
Ĥ0t.

a) Derive the following equation of motion for the states in the I-picture:

ih̄
d

dt
|ψ(t)〉I = V̂I(t)|ψ(t)〉I .

b) Show next that the time-evolution operator ÛI(t, t0) in the I-picture has the
following integral equation,

ÛI(t, t0) = 1̂− i

h̄

∫ t

t0

dt′VI(t
′)ÛI(t

′, t0).

c) Suppose then that the time-dependent potential VS(t) is a weak perturbation.
Using the I-picture, derive the following lowest-order time-dependent pertur-
bation theory result for the probability of a transition from an initial state |φi〉
at t0 to a state |φf〉 at t:

Pfi(t, t0) ≡ |〈φf |ψ(t)〉|2 ≈
∣∣∣∣δfi − i

h̄

∫ t

t0

dt1〈φf |V̂S(t1)|φi〉ei(Ef−Ei)t1/h̄

∣∣∣∣2,
where the initial and final states are eigenstates of Ĥ0: Ĥ0|φf〉 = Ef |φf〉 and

Ĥ0|φi〉 = Ei|φi〉.

4. Let’s put a spinless hydrogen atom into a weak time-dependent perturbation po-
tential

V̂S(t) = Cŷ2 e
iω41t + e−iω41t

t2 − 2tτ + 2τ 2
,

where C and τ > 0 are real constants, and in terms of the eigenenergies of the un-
perturbed hydrogen atom ω41 = (E4−E1)/h̄. Note that ŷ above is the y-coordinate
operator (and not a unit vector) and that ŷ2 = ŷŷ .

a) Using lowest-order time-dependent perturbation theory, find the selection rules
for n, l and m in transitions from the ground state |1, 0, 0〉 to any of the excited
states. See the collection of formulae for help.

b) Calculate the probability of a transition from the ground state to the 3d-state
|3, 2, 2〉 during an infinitely long period of time (set t0 → −∞ and t → ∞). In
doing the residue integrals, explain why you choose the particular half-plane for
closing the integration path. Express the final result in terms of the Bohr radius a,
trigonometric and hyperbolic functions and ω31 ≡ (E3 − E1)/h̄, ω41 and τ . [Note:
This is a rather lengthy exercise, so we suggest to leave it as the last one to answer.
Don’t panic if you seem to run out of time, just keep going as far as you can.]



Useful(?) formulas and equations, for any of the problems:

Spherical coordinates and spherical harmonics:

r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) ∇2 =
1

r2

∂

∂r
(r2 ∂

∂r
)− 1

h̄2r2
L̂2

∫
d3r =

∫ ∞
0

drr2

∫
4π

dΩ =

∫ ∞
0

drr2

∫ π

0

dθ sin θ

∫ 2π

0

dϕ =

∫ ∞
0

drr2

∫ 1

−1

d(cos θ)

∫ 2π

0

dϕ

L̂2Ylm(θ, ϕ) = h̄2l(l + 1)Ylm(θ, ϕ) L̂zYlm(θ, ϕ) = h̄mYlm(θ, ϕ)

L̂2 = −h̄2

[
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

] ∫
dΩY ∗l′m′(θ, ϕ)Ylm(θ, ϕ) = δll′δmm′

Ylm(θ, ϕ) = (−1)
m+|m|

2

√
2l + 1

4π

√
(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ Yl,−m(θ, ϕ) = (−1)mY ∗l,m(θ, ϕ)

P k
l (z) = (1− z2)k/2

dk

dzk
Pl(z) Pl(z) =

1

2ll!

dl

dzl
(z2 − 1)l

Y00(θ, ϕ) =
1√
4π

Y10(θ, ϕ) =

√
3

4π
cos θ Y1±1(θ, ϕ) = ∓

√
3

8π
sin θe±iϕ

Y20(θ, ϕ) =

√
5

16π

(
3 cos2 θ − 1

)
Y2±1(θ, ϕ) = ∓

√
15

8π
cos θ sin θe±iϕ Y2±2(θ, ϕ) =

√
15

32π
sin2 θe±2iϕ

Stationary Schrödinger equation, the radial part:

r2d
2R(r)

dr2
+ 2r

dR(r)

dr
+

[
(kr)2 − l(l + 1)− r2 2m

h̄2 V (r)

]
R(r) = 0, k2 =

2mE

h̄2

Spherical Bessel & Neumann functions:

r2d
2R(r)

dr2
+ 2r

dR(r)

dr
+
[
(kr)2 − l(l + 1)

]
R(r) = 0→ R(r) = Ajl(kr) +Bnl(kr)

jl(x) = 2lxl
∞∑
s=0

(−1)s(s+ l)!

s!(2s+ 2l + 1)!
x2s nl(x) =

(−1)l+1

2lxl+1

∞∑
s=0

(−1)s(s− l)!
s!(2s− 2l)!

x2s

j0(x) =
sinx

x
j1(x) =

sinx

x2
− cosx

x
n0(x) = −cosx

x
n1(x) = −cosx

x2
− sinx

x

Trigonometric functions:

cos 2x = cos2 x− sin2 x, cos2 x+ sin2 x = 1, sin 2x = 2 sin x cosx

Euler: eiα = cosα + i sinα cosα = 1
2
(eiα + e−iα) sinα = 1

2i
(eiα − e−iα)

Hyperbolic functions:

sinhx = 1
2
(ex − e−x) cosh x = 1

2
(ex + e−x)

See next page!



Power series, Taylor expansions:

ex =
∞∑
n=0

xn

n!
cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

√
1 + x = 1 +

1

2
x− 1

8
x2 + . . . ln(1 + x) = x− 1

2
x2 +

1

3
x3 + . . .

Hydrogen-like atom wave-functions:

Ψnlml
(x) = Rnl(r)Ylml

(θ, ϕ) κ =
Z

na
a =

4πε0h̄
2

µe2
=

h̄

αµc

Rnl(r) =

√
(2κ)3

(n− l − 1)!

2n(n+ l)!
(2κr)le−κrL2l+1

n−l−1(2κr) Lqp(x) =

p∑
k=0

(−1k)
(p+ q)!xk

(p− k)!(q + k)!k!

R10 = 2

(
Z

a

)3/2

e−Zr/a R20 =
1√
2

(
Z

a

)3/2(
1− Zr

2a

)
e−Zr/2a R21 =

1

2
√

6

(
Z

a

)5/2

re−Zr/2a

R30 =
2

3
√

3

(
Z

a

)3/2(
1− 2Zr

3a
+

2

27
(
Zr

3a
)2

)
e−Zr/3a R31 =

8

27
√

6

(
Z

a

)5/2

r

(
1− Zr

6a

)
e−Zr/3a

R32 =
4

81
√

30

(
Z

a

)7/2

r2e−Zr/3a

Spherical spinors : (Yljm(Ω))ms = 〈Ω,ms|l, s =
1

2
, j,m〉c

|l, s =
1

2
, j = l ± 1

2
,m〉c = ±

√
l ±m+ 1

2

2l + 1
|l, s =

1

2
,ml = m− 1

2
,ms =

1

2
〉u

+

√
l ∓m+ 1

2

2l + 1
|l, s =

1

2
,ml = m+

1

2
,ms = −1

2
〉u

∫
dΩYljm(Ω)†Yl′j′m′(Ω) = δll′δjj′δmm′

For integrations in the complex plane:

Resf(z)
∣∣
z=z0

= lim
z→z0

1

(n− 1)!

( d
dz

)n−1
[(z−z0)nf(z)]

∮
C

dzf(z) = 2πi
n∑
j=1

Resf(z)
∣∣
z=zj

.

For integrations: ∫ ∞
0

dxxne−x = n!

∫ ∞
0

dxxne−ax =
n!

an+1



Generalized angular momentum:

[Ĵi, Ĵj] = ih̄
3∑

k=1

εijkĴk, [Ĵ2, Ĵi] = 0, Ĵ2|j,m〉 = h̄2j(j+1)|j,m〉, Ĵz|j,m〉 = h̄m|j,m〉

Ĵ± = Ĵx ± iĴy, Ĵ±|j,m〉 = h̄
√

(j ∓m)(j ±m+ 1)|j,m± 1〉

Pauli spin-matrix identities:

(~σ · A)(~σ ·B) = (A ·B)I2 + i(A×B) · ~σ

σjσk = δjkI2 + iεjklσl [σj, σk] = 2iεjklσl ~σ × ~σ = 2i~σ

Vector and Levi-Civita identities:

(a× b)i = εijkajbk εijkεklm = δilδjm − δimδjl


