y TIME-DOMAIN LIFETIME MEASUREMENTS

hows that they are indistinguishable at all times (Figurg

¢ FD data. The simulated
frequency responses are- dlly indistinguishable for

these two decay laws,

has been dgScribed within the framework of gegeral least-
ting.>~ The unfortunate result is that the ability

conservative interpretation of data.

4.3. TIME-CORRELATED
SINGLE-PHOTON COUNTING

At present almost all time-domain measurements are per-
formed using TCSPC. Several comprehensive mono-
graphs dealing with TCSPC have appeared.*®~1° One book
is completely devoted to TCSPC and provides numerous
valuable details.® While somewhat dated, the insightful
monograph of Ware!® clearly describes the concept of
TCSPC, and Ware anticipated many of its present applica-
tions. Rather than present a history of the method, we will
start with current state-of-the-art instrumentation. These
instruments use high-repetition-rate picosecond or femto-
second laser light sources and high-speed MCP PMTs. In
later sections we will describe other light sources and
detectors,

4.3.A. Principles of TCSPC

The principles of TCSPC can be understood by examina-
tion of an instrument schematic (Figure 4.7). The experi-
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ment starts with the excitation pulse, which excites the
sample and starts the time measurement clock, TCSPC is a
digital technique, counting photons which are time-correlated
inrelation to the excitation pulse. The heart of the method is
a time-to-amplitude converter (TAC), which can be con-
sidered to be analogous to a fast stopwatch,

The sample is repetitively excited using a pulse light
source, often from a laser or flashlamp. Each pulse is
optically monitored, by a high-speed photodiode or
photomultiplier, to produce a start signal which is used to
trigger the voltage ramp of the TAC. The voltage ramp is
stopped when the first fluorescence photon from the sam-
ple is detected. The TAC provides an output pulse whose
voltage is proportional to the time between the start and
stop signals. A multichannel analyzer (MCA) converts this
voltage to a time channel using an analog-to-digital con-
verter (ADC). Summing over many pulses, the MCA
builds up a probability histogram of counts versus time
channels. The experiment is continued until one has col-
lected more than 10,000 counts in the peak channel. As will
be described below in more detail, there can be no more
than one photon detected per 100 laser pulses, Under these
conditions, the histogram of photon arrival times repre-
sents the intensity decay of the sample.

There are many subtleties in TCSPC which are not
obvious at first examination. Why is the photon counting
rate limited to one photon per 100 laser pulses? Present
electronics for TCSPC only allow detection of the first
arriving photon. Once the first photon is detected, the dead
time in the electronics prevents detection of another photon
resulting from the same excitation pulse. Recall that emis-
sion is a random event. Following the excitation pulse,
more photons are emitted at early times than at late times.
Ifall could be measured, then the histogram of arrival times
would represent the intensity decay. However, if many
arrive, and only the firstis counted, then the intensity decay
is distorted to shorter times. This effect is described in
more detail in Section 4.5.F.

Another important feature of TCSPC is the use of the
rising edge of the photoelectron pulse for timing. This
allows phototubes with nanosecond pulse widths to pro-
vide subnanosecond resolution. This is possible because
the rising edge of the single photon pulses are usually
steeper than one would expect from the time response of
the PMT. Also, the use of a constant fraction discriminator
provides improved time resolution by removing the vari-
ability due to the amplitude of each pulse.

Example of TCSPC Data

Prior to examini omponents in more
it;it1s valuable to examine the actual data, i
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Fluorescence
Anisotropy

Upon excitation with polarized light, the emission from
many samples is also polarized. The extent of polarization
of the emission is described in terms of the anisotropy (r).
Samples exhibiting nonzero anisotropies are said to dis-
play polarized emission. The origin of these phenomena is
based on the existence of transition moments for absorp-
tion and emission which lie along specific directions
within the fluorophore structure. In homogeneous solution
the ground-state fluorophores are all randomly oriented.
When exposed to polarized light, those fluorophores
which have their absorption transition moments oriented
along the electric vector of the incident light are preferen-
tially excited. Hence, the excited-state population is not
randomly oriented. Instead, there is a somewhat larger
number of excited molecules having their transition mo-
ments oriented along the electric vector of the polarized
exciting light.

Depolarization of the emission can be caused by a num-
ber of phenomena, the relative importance of which de-
pends upon the sample under investigation. Rotational
diffusion of fluorophores is one common cause of depo-
larization. The anisotropy measurements reveal the aver-
age angular displacement of the fluorophore that occurs
between absorption and subsequent emission of a photon.
This angular displacement is dependent upon the rate and
extent of rotational diffusion during the lifetime of the
excited state. These diffusive motions, depend, in turn,
upon the viscosity of the solvent and the size and shape of
the rotating molecule. For fluorophores in solution, the
rotational rate of the fluorophore is dependent upon the
viscous drag imposed by the solvent. As a result, a change
in solvent viscosity will result in a change in fluorescence
anisotropy. For small fluorophores in solutions of low
viscosity, the rate of rotational diffusion is typically faster
than the rate of emission. Under these conditions, the
emission is depolarized and the anisotropy is close to zero.

The dependence of fluorescence anisotropy upon rota-
tional motion has resulted in numerous applications of

fluorescence anisotropy measurements in biochemical re-
search. This is because the timescale of rotational diffusion
of biomolecules is comparable to the decay time of many
fluorophores. For instance, a protein with a molecular
weight of 25 kDa can be expééted to have a rotational
correlation time near 10 ns. This is comparable to the
lifetime of many fluorophores when coupled to proteins.
Hence, factors which alter the rotational correlation time
will also alter the anisotropy. As examples, fluorescence
anisotropy measurements have been used to quantify pro-
tein denaturation, protein association with other macro-
molecules, and the internal dynamics of proteins. In
addition, the anisotropies of membrane-bound fluoro-
phores have been used to estimate the internal viscosities
of membranes and the effects of lipid composition upon
the membrane phase-transition temperature.

In this chapter we describe the fundamental theory for
steady-state measurements of fluorescence anisotropy and
present selected biochemical applications. In the next
chapter we will describe the theory and applications of
time-resolved anisotropy measurements.

10.1. DEFINITION OF FLUORESCENCE
ANISOTROPY

The measurement of fluorescence anisotropy is illustrated
in Figure 10.1. The sample is excited with vertically polar-
ized light. The electric vector of the excitation light is
oriented parallel to the vertical or z-axis. One then meas-
ures the intensity of the emission through a polarizer. When
the emission polarizer is oriented parallel (ll) to the direc-
tion of the polarized excitation, the observed intensity is
called I Likewise, when the polarizer is perpendicular (L)
to the excitation, the intensity is called ;. These values are
used to calculate the anisotropy’:
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Detector

Figure 10,1, Schematic diagram for measurement of fluorescence
anisotropies.

I“—IJ_ [10.1]
sl

Cj+21

The anisotropy is a dimensionless quantity which is inde-
pendent of the total intensity of the sample. This is because
the difference (Ij — I.) is normalized by the total intensity,
which is Ir= I + 21,.

In earlier publications one frequently encounters the
term polarization, which is given by

% 1” -1 [10.2]

I|I+IJ_

The polarization and anisotropy values can be inter-
changed using

SiE 3r [10.3]
24r

P [10.4]
3-P

Although there is nothing incorrect about the notion of
polarization, its use should be discouraged. Anisotropy is
preferred because most theoretical expressions are consid-
erably simpler when expressed in terms of this parameter,
an observation first made by Alexander Jablofiski." As an
example of this simplification, consider a mixture of
fluorophores, each with polarization P; and a fractional
fluorescence intensity f;. The polarization of this mixture
(P) is given by?

[%__;.T £y ﬁ [10.5]

PRINCIPLES OF FLUORESCENCE SPECTROSCOPY

In contrast, the average anisotropy (7) is given by

=Y firi

[10.6]

where the r; indicate the anisotropies of the individug]
species. The latter expression is clearly preferable. Fur.
thermore, following pulsed excitation, the decay of fluo-
rescence anisotropy [r(7)] of a sphere is given by
r(t) =roe”"/® (10.7)
where rp is the anisotropy at £ =0, and 0 is the rotational
correlation time of the sphere. The decay of polarization is
not a single exponential, even for a spherical molecule.

Suppose that the light observed through the emission
polarizer is completely polarized. Then]; =0, and P=r=
1.0. This value can be observed for scattered light from an
optically dilute scatterer. Completely polarized emission
is never observed for fluorescence from homogeneous
unoriented samples. The measured values of P or r are
smaller due to the angular dependence of photoselection
(Section 10.2). Completely polarized emission can be ob-
served for oriented samples.

Now suppose that the emission is completely depolar-
ized. In this case, [y = I; and P = r = 0. However, it is
important to note that P and r are not equal for intermediate
values. For the moment, we have assumed that these inten-
sities could be measured without artifacts due to the polar-
izing properties of the optical components, especially the
emission monochromator (Section 2.3.B). In Section 10.4
we will describe methods to correct for such interference.

10.1.A. Origin of the Definitions of
Polarization and Anisotropy

One may wonder why two widely used measures exist for
the same phenomenon. Both P and » have a rational origin.
Consider partially polarized light traveling along the x-axis
(Figure 10.2), and assume that one measures the intensities
I, and Iy with the detector and polarizer positioned on the
x-axis. The polarization of this light is defined as the
fraction of the light that is linearly polarized. Specifically,

pul [10.8]
ptn

where p is the intensity of the polarized component, and n
is the intensity of the natural component. The intensity of
the natural component is given by n = 2I;. The remaining
intensity is the polarized component, which is given by p =
I, — 1. For vertically polarized excitation, I; = Iy and I = I1.
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Source

p= 1:- Iy

Figure 10.2, Polarization of a ray of light.

Substitution into Eq. [10.8] yields Eq. [10.2], which is the
standard definition for polarization.

The anisotropy (r) of a light source is defined as the ratio
of the polarized component to the total intensity (/7),

L-1, _L-I

- s [10.9]
L+l+L It

When the excitation is polarized along the z-axis, dipolar
radiation from the fluorophores is also symmetric around
the z-axis. Hence, I = Iy. Recalling that I, =1, and I; = I,
one obtains Eq. [10.1].

The polarization is an appropriate parameter for describ-

ing a light source when a light ray is directed along a
particular axis. In this case, p + n is the total intensity, and

Pis the ratio of the excess intensity along the z-axis divided
by the total intensity. In contrast, the radiation emitted by
afluorophore is symmetrically distributed about the z-axis.

z
|

X===lt— D rientation
/1 ipole orient

y

Figure 10,3, Radiating dipole in a coordinate system. The dipole is

E}‘lcntfad ‘_‘1‘3“8 the z-axis, and the intensity I({) of the emission in any
irectionis proportional to cos? £, where  is the angle from the x—y plane.
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This distribution of radiated intensity is shown in Figure
10.3 for a dipole oriented along the z-axis. The intensity of
the radiated light is proportional to cos? {, where  is the
angle above or below the x—y plane. It is for this reason
that, for excitation polarized along the z-axis, the total
intensity is not given by I + I, but rather by Iy =1 + 2
I, (Section 10.4.F). Hence, the anisotropy is the ratio of
the excess intensity that is parallel to the z-axis to the total
intensity. It is interesting to notice that a dipole oriented
along the z-axis does not radiate along this axis and cannot
be observed with a detector on the z-axis.

10.2. THEORY FOR ANISOTROPY

The theory for fluorescence anisotropy can be derived by
consideration of a single n‘l_pleculec.3 Assume for the mo-
ment that the absorption and emission transition moments
are parallel. This is nearly true for the membrane probe
DPH. Assume that this single molecule is oriented with
angles 0 relative to the z-axis and ¢ relative to the y-axis
(Figure 10.4). Of course, the ground-state DPH molecules
will be randomly oriented in an isotropic solvent. Our goal
is to calculate the anisotropy that would be observed for
this oriented molecule in the absence of rotational diffu-
sion. The conditions of parallel dipoles, immobility, and
random ground-state orientation simplify the derivation,
It is known that fluorescing fluorophores behave like
radiating dipoles.* The intensity of light radiated from a

cos B

2
X
S g ———

\]
s sin 8 cos @
—aN
A\

’
”
Q,"‘-..¢

O
g,\,/

1,5cos’@
1= sin’6 sin®

Y

Figure 10.4. Emission intensities for a single fluorophore in a coordi-

nate system.
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dipole is proportional to the square of its vector projected
onto the axis of observation. One can also reason that the
emission is polarized along the transition moment. The
intensity observed through a polarizer is proportional to
the square of the projection of the electric field of the
radiating dipole onto the transmission axis of the polarizer.
These projections are given by

j(6, ¢) = cos* 8 [10.10]

1,(6, 9) =sin® 0 sin ¢ [10.11]
In an actual experiment the solution will contain many
fluorophores with a random distribution. The anisotropy is
calculated by performing the appropriate average based on
excitation photoselection and how the selected molecules
contribute to the measured intensity. First, consider exci-
tation polarized along the z-axis. Such excitation must
excite all molecules having an angle ¢ with respect to the
y-axis with equal probability. That is, the population of
excited fluorophores will be symmetrically distributed
around the z-axis. Any experimentally accessible popula-
tion of molecules will be oriented with values of ¢ from 0
to 21 with equal probability. Hence, we can eliminate the
¢ dependence in Eq. [10.11]. The average value of sin® ¢
is given by

n
[ sin® ¢ do
; (10.12]
(sin® ¢) = OT =';-
Jdo
0
and therefore
[j(8) = cos? 0 [10.13]
[10.14]

1,0)= % sin? 6

Now assume that we are observing a collection of fluoro-
phores which are oriented relative to the z-axis with a
probability f(8). In the following section we will consider
the form of {B) expected for excitation photoselection. The
measured fluorescence intensities for this collection of
molecules are

PRINCIPLES OF FLUORESCENCE SPECTROSCOpPY

n/2
L= IJ‘(G) cos? 0 db = k (cos? 0) [10.15]
0
n/2
1 120 do K (sin2
1l=§_[ﬁe) sin Bdei(sm 6) [10.16]
0

where f{6) dO is the probability that a fluorophore is
oriented between 0 and 0 + d0, and k is an instrumenta]
constant. Using Eq. [10.11] and the identity sin®9=1-
cos? 6, one finds that
3(cos?6) — 1 [10.17]
e

Hence, the anisotropy is determined by the average value
of cos? @, where 0 is the angle of the emission dipole
relative to the z-axis. This is because the observed intensi-
ties Jj and I are proportional to the square of the projection
of the individual transition moments onto the x- and the
z-axis (Figure 10.4).

It is instructive to consider the relationship between r
and 6. For a single fluorophore oriented along the z-axis,
with collinear transitions, 8 = 0 and » = 1.0. However, it is
not possible to obtain a perfectly oriented excited-state
population with optical excitation of homogeneous solu-
tions. Hence, the anisotropies are always less than 1.0.
Complete loss of anisotropy is equivalent to 8 =54.7°. This
does not mean that each fluorophore is oriented at 54.7° or
has rotated through 54.7°. Rather, it means that the average
value of cos® 0 is 1, where 0 is the angular displacement
between the excitation and emission moments. Recall that
in the derivation of Eq. [10.17] we assumed that these
dipoles were collinear. A slightly more complex expres-
sion is necessary for almost all fluorophores because the
transition moments are rarely collinear. In addition, we
have not yet considered the effects of photoselection on the
anisotropy values.

10.2.A. Excitation Photoselection of
Fluorophores "

Observation of fluorescence requires excitation of the
fluorophores. When a sample is illuminated with polarized
light, those molecules with their absorption transition mo-
ments aligned parallel to the electric vector of the polarized
excitation have the highest probability of absorption. The
electric dipole of a fluorophore need not be precisely
aligned with the z-axis to absorb light polarized along this
axis. The probability of absorption is proportional to cos?
6, where 0 is the angle the absorption dipole makes with

!
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the z-axis.3 Hence, excitation with polarized light results
ina population of excited fluorophores that is symmetri-
cally distributed around the z-axis (Figure 10.5). This
phenomenon is called photosaiection. Note that the ex-
cited-state population is symmetrical around the z-axis.
Most of the excited fluorophores are aligned close to the
z-axis, and very few fluorophores have their transition
moments oriented in the x=Y plane. For the random
ground-state distribution, which must existin a disordered
solution, the number of molecules at an angle between 0
and 0 + dO is proportional to sin © d6. This quantity is
prnportional to the surface area on a sphere within the
angles 6 and 8 + 46. Hence, the distribution of molecules
excited by vertically polarized light is given by

(6) 6 = cos”  sin 0 dO [10.18]

"The probability distribution given by Eq. [10.18] deter-
mines the maximum photoselection that can be obtained
using one-photon excitation of an isotropic solution, More
highly oriented populations can be obtained using mul-
tiphoton excitation.” Recall that the anisotropy is a simple
function of {cos*0) (Eq. [10.17]), s0 calculation of {cos*
6) allows calculation of the anisotropy.

For collinear absorption and emission dipoles, the maxi-
mum value of {cos?0) is given by

7
. Yy

4 Tu

Fi ure n <
r(}g: ; : 0.5. Excited-state distribution for immobile fluorophores with
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n/2
[ cos? 0.18) dO e
10.1
(cos2 0)= 0—172——__‘ ]
[ £(0) a0
0

Substitution of Eq. [10.18] into Eq. [10.19] yields {cos”
0)=2. Recalling Eq. [10.17], one finds a maximum anisot-
ropy of 0.4. This is the value which is observed when the
absorption and emission dipoles are collinear, and when
there are no processes which result in depolarization. Un-
der these conditions, the excited-state population is pref-
erentially oriented along the z-axis (Figure 10.5), and the
value of I, is one-third the value of Iy (I = 3I1). We note
that this value (r = 0.4) is considerably smaller than that
possible for a single fluorophore oriented along the z-axis
(r=1.0).

It is important to remember that there are other possible
origins for polarized light. These include reflections and
light scattered by the sample. For a dilute scattering solu-
tion, the anisotropy is close to 1.0. Scattered light can
interfere with anisotropy measurements. If the measured
anisotropy for a randomly oriented sample is greater than
0.4, one can confidently infer the presence of scattered
light in addition to fluorescence. The maximum anisotropy
of 0.4 for collinear absorption and emission dipoles is a
consequence of the cos? 6 probability of light absorption.
Anisotropy values can exceed 0.4 for multiphoton excita-
tion (Section 10.13).

0.3. EXCITATION ANISOTROPY

In the preceding discussion we assumed that the gbsorption
and emissiotnmoments were collinear (roy/= 0.4). Few
fluorophores disglay ro = 0.4. For most ffaorophores, the
ro values are less than 0.4, and, in gepéral, the anisotropy
values depend on the -xcitation wévelength. This is ex-
plained in terms of the transitionfoments being displaced
by an angle relative to eacipdther. In the previous section
(Egs. [10.10]—[10.17]), 4 dermonstrated that displace-
ment of the emission gipole by an’s gle 6 from the z-axis
resulted in a decrgdse in the anisotxopy by a factor of
(€ cos? 8 — 1)/2. Similarly, the disptacement of the
absorption axd emission dipoles by an angi€ B results in
a further lp€s of anisotropy. The observed anidetropy in a
vitrifieg/dilute solution is a product of the loss 0 anisot-
ropy/due to photoselection (resulting in a reduction df the
arf{sotropy by a factor of %) and that due to the angula
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Time-Dependent
Anisotropy Decays

In the preceding chapter we described the measurement
and interpretation of steady-state fluorescence anisot-
ropies. These values are measured using continuous illu-
mination and represent an average of the anisotropy decay
over the intensity decay. Measurement of steady-state an-
isotropies is simple, but interpretation of the steady-state
anisotropies usually depends on an assumed form for the
anisotropy decay, which is not directly observed in the
experiment. Additional information is available if one
measures the time-dependent anisotropy, that is, the values
of r(f) following pulsed excitation. The form of the anisot-
ropy decay depends on the size, shape, and flexibility of
the labeled molecule, and the data can be compared with
the decays calculated from various molecular models.
Anisotropy decays can be obtained using the TD or the FD
method.

It is valuable to understand the factors which affect the
anisotropy decays. For a spherical molecule, the anisot-
ropy is expected to decay with a single rotational correla-
tion time (0). Perhaps the most frequent interpretation of
the correlation time is in terms of the overall rotational
correlation time of a protein. The measured values of 6 can
compare with the value predicted for a hydrated sphere of
equivalent molecular weight (Eq. [10.52]). However, nu-
merous factors can result in multiexponential anisotropy
decays. Multiexponential anisotropy decays are expected
for nonspherical fluorophores or proteins. In this case the
correlation times are determined by the rates of rotation
about the various molecular axes. Anisotropy decays can
be used to estimate the shapes of proteins.

Inaddition to being affected by shape, anisotropy decays
are affected by the segmental flexibility of the macromole-
Cl‘:le. For instance, tryptophan anisotropy decays of pro-
teins frequently display correlation times that are too short
to be due to rotational diffusion of the whole macromole-
t:iule. Th.ese short-correlation-time components are often
wtfe to mdepend.ent motions of the tryptophan residue

ithin the protein. Measurements of these components

have been widely used to understand the internal dynamics
of proteins. Anisotropy decays can also be affected by RET
between molecules of the same type of fluorophore, that
is, depolarization due to homotransfer.

Anisotropy decays of membrane-bound probes have
been particularly informative. Membrane-bound probes
often display unusual behavior, whereby the anisotropies
do not decay to zero. This behavior occurs because, in
contrast to probes in isotropic solutions, probes in mem-
branes do not rotate freely. The extent of rotation is often
limited by the anisotropic environment of a membrane.
The nonzero anisotropies at long times have been inter-
preted in terms of the order parameters of the membrane.
In this chapter we present examples of simple and complex
anisotropy decays to illustrate the wealth of information
available from measurements of time-dependent anisot-
ropies. In the following chapter we describe more ad-
vanced concepts in anisotropy decay analysis.

11.1. ANALYSIS OF TIME-DOMAIN
ANISOTROPY DECAYS

Suppose that a fluorophore is excited with a pulse of
vertically polarized light and that it rotates with a single
correlation time. The anisotropy decay is determined by
measuring the decay of the vertically () and horizontally

. (L) polarized components of the emission. If the absorp-

tion and emission transition moments are collinear, the
time-zero anisotropy is 0.4. In this case the initial intensity
of the parallel component is threefold larger than that of
the perpendicular component (Figure 11.1,1eft). Assuming
that the fundamental anisotropy is greater than zero (ro>
0), the vertically polarized excitation pulse results in an
initial population of fluorophores that is enriched in the
parallel orientation. The decay of the difference between
Ii(#) and I.(f), when properly normalized by the total
intensity, is the anisotropy decay (Figure 11.1, right).

321




322
10
r =10 ns
b 8=10
05: e :.’Mns
T4 =T, (1 +2111)
>
=
Z oiF
i
s i
= 005}
" - —=Magic Angle
001 ;g UM T (AL MU Pl |
0 4 12 16 20 24 28
TIME (ns)

PRINCIPLES OF FLUORESCENCE SPECTROSCOPY

1.0
C =10 ns
N ©=10 ns
05: 0.4
. 5
a.
2
=t Ql:-
o C
) C
=z 005}
< =
U ey
0.01 1 1 1 1 1

0 4 8 12 16 20 24 28
TIME (ns) -

Figure 11.1. Time-dependent polarized decays (leff) and the calculated anisotropy decay (right). From Ref, 1.

Examination of the left panel in Figure 11.1 reveals that
the parallel component initially decays more rapidly than
the horizontal component, This occurs because the verti-
cally oriented fluorophores are decaying by two processes,
the intensity decay with decay time T and rotation out of
the vertical orientation with a correlation time 6. The
horizontal component initially decays more slowly be-
cause it is repopulated by rotation from the excess verti-
cally oriented population.

Interpretation of anisotropy decays is best understood in
terms of the individual components. The decays of the
parallel (Il) and perpendicular (L) components of the emis-
sion are given by

1) =5 IO +21()] e

ILtf) = % I“('t-)[l =] [11.2]

where 7(r) is the time-resolved anisotropy. Generally, 7(r)
can be described as a multiexponential decay,

He)=ro Y, g exp(-1/6) = 3, royexp(-/8)) [113]
j J

where rp = Zjro; is the limiting anisotropy in the absence of
rotational diffusion, the ©; are the individual correlation
times, and the gj are the associated fractional amplitudes
in the anisotropy decay (Zg;j=1.0). Depending on the
circumstances, ro may be aknown parameter, perhaps from
a frozen solution measurement. Alternatively, all the am-
plitudes (r¢;) can be considered to be experimental vari-

ables, As shown in the previous chapter, the total intensity
for a sample is given by It = I+ 2I). Similarly, the total
(rotation-free) intensity decay is given by

I() = L) + 211 (1) [11.4]

In the time domain, one measures the time-dependent
decays of the polarized components of the emission (Egs.
[11.1] and [11.2]). The polarized intensity decays are used
to calculate the time-dependent anisotropy,

i lh(t) & Ii(f)
L@ +21,.(0)

5
) [11.5]

The time-dependent anisotropy decay is then analyzed to
determine which model is most consistent with the data.
The experimental procedures and the form of the da

copfponents of the modulated emission,
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