
KEMS448 — Advanced lab-works in physical chemistry

Numerical derivatives and integration, 2 ECTS

Toni Kiljunen 2–2008

Abstract

Numerical differentiation by difference approximations, numerical integration

by Newton-Cotes quadratures, and differential equation solving by Taylor and

Runge-Kutta methods comprise the curriculum of this exercise. Numerical in-

terpolation and solving systems of linear equations are additional topics covered

by the given literature. Vibrational states and energies are solved for a diatomic

I2 molecule using Morse-type potential functions and compared to corresponding

analytical values in the application part. Electronic excitation spectrum is calcu-

lated for the B ← X transition. Intensities of fundamental vibrational transitions

are compared to overtones. The numerical procedures are implemented using the

MATLAB program throughout.

1

1 Introduction

In order to use numerical methods one needs to have an idea about their mathemati-
cal foundations, applicability, and accuracy. The computer program must be flawless
and robust, i.e., capable of detecting singularities that cannot be solved. The result
of a numerical evaluation is usually approximative and dependent on methodological,
rounding, and accumulative errors.

Analytical differentiation and integration differ in that the latter is not a straightforward,
mechanical procedure. Numerical integration, on the other hand, is a stable operation
in contrast to numerical differentiation. The difference quotient used in the latter makes
it troublesome because significant numbers/digits may become lost.

Ordinary differential equations (ODE) and differential equation systems are frequent
models in studies of physical phenomena. Here we examine an initial value prob-
lem of a first order ODE system (such as that encountered in reaction kinetics or in
a time-dependent Schrödinger equation). In the application part a time-independent
Schrödinger equation, which is an eigenvalue problem, is solved by matrix diagonaliza-
tion.

2 Numerical differentiation

Let the values of a function f be known at points x − h, x, and x + h. An estimation
for f ′(x) is calculated by the difference quotient, without an analytical formula for the
derivative.
Forward difference:

f ′(x) ≈ f(x + h)− f(x)

h
=: D+(h) , (1)

backward difference:

f ′(x) ≈ f(x)− f(x− h)

h
=: D−(h) , (2)

central difference:

f ′(x) ≈ f(x + h)− f(x− h)

2h
=: D0(h) . (3)

Higher derivatives can be approximated correspondingly:

f ′′(x) ≈ f(x + h)− 2f(x) + f(x− h)

h2
. (4)

Exercise: Using D0(h) derive a formula for (∂2f(x, y)/∂x∂y).

Error estimation for forward difference approximation can be obtained from a Taylor
expansion:

eh(x) =
f(x + h)− f(x)

h
− f ′(x)

2

=
f(x) + f ′(x)h + 1

2
f ′′(ξ)h2 − f(x)

h
− f ′(x)

=
1

2
f ′′(ξ)h , ξ ∈]x, x + h[,

where f ′′ and ξ are unknown, but the error is seen to be of order O(h). For the central
difference and second derivative we obtain O(h2):

f(x + h)− f(x− h)

2h
= f ′(x) + b1h

2 + b2h
4 + b3h

6 + . . .

= f ′(x) +O(h2) .

These mean that eh(x) → 0 as h → 0. In practice one needs to consider round-off errors,
so the best h 6= 0.

Richardson’s extrapolation can be used for increasing the accuracy. Factor b1 in the
central difference

D0(h) = f ′(x) + b1h
2 +O(h4) (5)

is usually unknown, but it is independent of h. By doubling the h we obtain

D0(2h) = f ′(x) + b1(2h)2 +O(h4) = f ′(x) + 4b1h
2 +O(h4) . (6)

Eliminating the constant b1 from previous equations leads to

DR(h) :=
4

3
D0(h)− 1

3
D0(2h) = f ′(x) +O(h4) . (7)

Thus we obtained a O(h4)-approximation for f ′. The process could be continued further
on.

If the values of a function f were known only at predetermined points, the interpolating
spline function could be differentiated [1, 2]. This is useful especially when there are lots
of points for which the derivative is needed or when the points are not equally spaced.

3 Numerical integration

Newton–Cotes quadratures are based on interpolating polynomials. Let us consider
calculating the integral ∫ b

a
f(x)dx (8)

by setting a = x0 and h = b− a. Variable change x = x0 + sh leads to
∫ b

a
f(x)dx =

∫ 1

0
f(x0 + sh)h ds

= h
∫ 1

0
f(x0)ds + h2

∫ 1

0
sf ′(x0 + θh)ds

= hf0 + h2
∫ 1

0
sf ′(x0 + θh)ds , (9)

3

where f(x0 + sh) = f0 + shf ′(x0 + θh) and θ = θ(s) ∈]0, 1[are used. The integral can
be processed further:

∫ 1

0
sf ′(x0 + θh)ds = f ′(x0 + ξh)

∫ 1

0
sds

=
1

2
f ′(x0 + ξh) , ξ ∈]0, 1[. (10)

Thus the simplest way to to approximate an integral is the so called rectangular rule:
∫ b

a
f(x)dx = hf0 +

h2

2
f ′(x0 + ξh)

= hf0 + e[f] . (11)

More complicated formulas can be derived similarly. The given points are xi = x0 + ih

(i = 0 , 1 , . . . , k), where a = x0, b = xk, and h = (b − a)/k. The integral is now
approximated by at most k-degree (Newtonian) interpolating polynomial pk

1

∫ b

a
pk(x)dx , pk(x) = f(xi) =: fi , i = 0, 1, . . . , k . (12)

By changing the variable x = x0 + sh and expanding pk using forward differences2 we
obtain3

∫ b

a
pk(x)dx =

∫ k

0
pk(x0 + sh)h ds

= h
∫ k

0

[
f0 + ∆f0s +

1

2!
∆2f0s(s− 1) + . . .

+
1

k!
∆kf0s(s− 1) · · · (s− k − 1)

]
ds . (13)

This integral is easy to calculate, and by changing the k different Newton–Cotes quadra-
tures are obtained. The formulas are closed, because the interpolating polynomial in-
terpolates the f at the end-points of [a, b].

Choosing k = 1 leads to the trapezoidal rule
∫ b

a
f(x)dx ≈ h

∫ 1

0
(f0 + ∆f0s) ds

= hf0 + h
∫ 1

0
(f1 − f0)s ds

=
h

2
(f0 + f1) , (14)

which is accurate for f ′′ = 0, i.e., f is a line. Choosing k = 2 gives the Simpson’s rule
∫ b

a
f(x)dx ≈ h

3
(f0 + 4f1 + f2) (15)

1e.g. f0 = c0 + c1x0 + c2x
2
0 + · · ·+ ckxk

0 , f1 = c0 + c1x1 + c2x
2
1 + · · ·+ ckxk

1 , etc.
2Difference ∆ifj = fj , when i = 0 and ∆ifj = ∆i−1fj+1 −∆i−1fj , when i > 0.

3pk(x0 + sh) = pk−1(x0 + sh) + ∆kf0

(
s

k

)
.

4

and choosing k = 3 gives the Simpson’s 3/8 rule
∫ b

a
f(x)dx ≈ 3h

8
(f0 + 3f1 + 3f2 + f3) . (16)

Both are accurate for at most third degree polynomials. The methodological error is of
order O(h5). Another possibility is to interpolate f only at the internal points of [a, b]:
xi = x0 + ih (i = 0, . . . , k), where x0 = a + h, xk = b− h, and h = (b− a)/(k + 2). The
end-points are x−1 = a and xk+1 = b. The integral is now approximated by an open
Newton–Cotes formula

∫ b

a
pk(x)dx = h

∫ k+1

−1

[
f0 + ∆f0s + . . . +

1

k!
∆kf0s(s− 1) · · · (s− k − 1)

]
ds . (17)

Choosing k = 0 leads to the formula known as central point rule:
∫ b

a
f(x)dx = h

∫ 1

−1
f0ds +

h3

2!
f ′′(x0 + ξh)

∫ 1

−1
s2 ds

= 2hf0 +
h3

3
f ′′(x0 + ξh) , ξ ∈]− 1, 1[. (18)

Low-order Newton–Cotes quadratures yield non-accurate results, if the integration range
is too long. High-order polynomials on the other hand tend to oscillate. Therefore, the
range of integrations is divided into subintervals, where the integration is carried out
separately: ∫ b

a
f(x)dx =

n−1∑

i=0

∫ xi+1

xi

f(x)dx , (19)

where the range [a, b] is divided to n subintervals [xi, xi+1] of length h, where xi = x0+ih

(i = 0, 1, . . . , n), x0 = a, xn = b, and h = (b − a)/n. Applying the trapezoidal rule for
each of the subintervals, we obtain (ξi ∈]0, 1[)

∫ b

a
f(x)dx =

h

2
(f0 + 2f1 + 2f2 + . . . + 2fn−1 + fn)

− h3

12
[f ′′(x0 + ξ0h) + f ′′(x1 + ξ1h) + . . . + f ′′(xn−1 + ξn−1h)] . (20)

For the Simpson’s rule the range [a, b] is divided to 2n subintervals [xi, xi+1] of length
h, where xi = x0 + ih (i = 0, 1, . . . , 2n), x0 = a, x2n = b, and h = (b− a)/2n, i.e.,

∫ b

a
f(x)dx =

∫ x2

x0

f(x)dx +
∫ x4

x2

f(x)dx + . . . +
∫ x2n

x2n−2

f(x)dx (21)

and we obtain
∫ b

a
f(x)dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + . . . + 2f2n−2 + 4f2n−1 + f2n) . (22)

Exercise: Derive the formula for 3/8 rule.

In contrast to the above Newton–Cotes quadratures with equally spaced, fixed points,
the Gaussian quadratures [1, 2, 3] treat the integration points as free parameters (Leg-
endre polynomial nodes) used for solving the weight factors. Adaptive integration algo-
rithms use one or more elementary quadratures and determine the subinterval lengths

5

automatically so that a given accuracy requirement is fulfilled. Different step lengths
are used in different regions: a long step for a flat part of the function and a shorter
otherwise. Computational overhead raises rapidly in multidimensional integration due
to multiplicative integrals. A completely different approach is the Monte Carlo method,
which is based on a use of random number generators and applies well, when the di-
mensionality is large.

4 Differential equations

Let us consider an initial value problem for a DE system:

y′(t) = f(t,y(t))

y(t0) = y(0) ,
(23)

where t is an independent variable and y = (y1, y2, . . . , ym)T, i.e., component-wise:

y′1(t) = f1(t, y1, . . . , ym)

y′2(t) = f2(t, y1, . . . , ym)
...
y′m(t) = fm(t, y1, . . . , ym) ,

y1(t0) = y
(0)
1

...
ym(t0) = y(0)

m .

(24)

Let us consider the m = 1 case and Taylor methods that generalize for equation systems.
From the series expansion for y(t) at t + h we obtain an approximation for the formal
solution y(t′) = y(0) +

∫ t′
0 f(t, y)dt:

y(t + h) = y(t) + hy′(t) +O(h2)

= y(t) + hf(t, y) +O(h2) . (25)

By noting tn = t0 + nh, yn = y(tn) we obtain the Euler’s method

y0 = y(0)

yn+1 = yn + hf(tn, yn) , n = 0, 1, 2, . . . (26)

The method accuracy (O(h2) per step) can be enhanced by including additional terms
from the Taylor series, e.g., the second-order Taylor method is

y(t + h) = y(t) + hy′(t) +
1

2
h2y′′(t) +O(h3) ,

yn+1 = yn + hf(tn, yn) +
1

2
h2g(tn, yn) , (27)

6

where
g(t, y) =

∂f(t, y)

∂t
+ f(t, y)

∂f(t, y)

∂y
.

This method suffers a bit from the need of calculating the partial derivatives.

The Runge–Kutta method increases the accuracy by calculating the function f at several
points. By forming Taylor expansions for y(t) and y(t + h) at t + h/2, we obtain a pair
of equations

y(t) = y(t +
h

2
) + y′(t +

h

2
)

(
−h

2

)
+

1

2
y′′(t +

h

2
)

[
−h

2

]2

+O[(h/2)3] ,

y(t + h) = y(t +
h

2
) + y′(t +

h

2
)
h

2
+

1

2
y′′(t +

h

2
)

[
h

2

]2

+O[(h/2)3] , (28)

which eliminates to

y(t + h) = y(t) + h y′(t +
h

2
)

︸ ︷︷ ︸
f(t+h

2
,y(t+h

2
))

+O(h3) . (29)

By calculating y(t + h/2) with Euler’s method, i.e.,

y(tn +
h

2
) = yn +

h

2
f(tn, yn) , (30)

we obtain the second-order Runge–Kutta method (a central point method):

ŷ = hf(tn, yn)

yn+1 = yn + hf(tn + h
2
, yn + 1

2
ŷ) .

(31)

The error made during one step is here of order O(h3). Expanding y′ to a series at differ-
ent points between [yn, yn+1] and combining terms, the low-order errors terms eliminate.
The best known result is the fourth-order Runge–Kutta method, where four calculations
of f are needed for one full step:

k1 = hf(tn, yn) (32)

k2 = hf(tn +
h

2
, yn +

k1

2
) (33)

k3 = hf(tn +
h

2
, yn +

k2

2
) (34)

k4 = hf(tn + h, yn + k3) (35)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) +O(h5) . (36)

For this to be as effective as the central point method, the step length must be twice
as long while the error must remain at most the same. In case a high accuracy is not
needed (thus h can be large) and f is nonregular, a lower-order method may be better.

These one-step solvers do not use any information about the previous steps. Multi-step
methods utilize in addition to yn also the yn−1, yn−2, . . . values for determining the yn+1.
Quadrature results can be utilized here to obtain solutions in the form

y(tn+1) = y(tn−k) +
∫ tn+k

tn−k

f(t, y(t))dt

which lead to so called predictor-corrector solvers such as the Crank–Nicholson method.

7

5 Execution of the project

Literature. The written report describes shortly what is meant by the Gauss elimina-
tion, LU-decomposition, pivoting, positive definite equation systems, Cholesky method,
and iterative solvers for equation systems. An example is given for numerical interpola-
tion.

Differentiation. For f(x) = ln(x), compute the estimation for f ′(2) using the single
precision (32-bit floating point representation, values 10−38–1038, ca. 7 significant num-
bers) with different values of h: 0.2, 0.1, 0.05, 0.01, 0.001, and 0.0001. Tabulate the
D+(h), D−(h), D0(h), and DR(h) as well as f ′′(2). Compare to double-precision (64
bits) D+(h) and f ′′ results for h values of 0.2, 0.1, and 0.05.

Integration. Compute the integral
∫ π
0 sin x dx using the trapezoidal and Simpson’s

rules with values 1, 2, 4, 8, 16, 32, 64, and 128 for n. Tabulate the results as well as the
absolute errors.

Differential equation. Solve the initial value problem

y′(t) = −y(t)2

y(0) = 1

numerically using Taylor (first and second order) and Runge–Kutta methods between
[0,1] with h = 1/10 step length. Compare to the analytical result.

Electron-vibration spectrum of iodine. After the solutions of previous exercises are
shown to a teaching assistant, he/she gives a Matlab-code that solves the Schrödinger
equation for I2 vibration

− h̄2

2µ

d2Ψ(r)

dr2
+ V (r)Ψ(r) = EΨ(r) ,

where V (r) = De(1 − e−a(r−re))2 and reduced mass µ = mI/2. In atomic units h̄ =

1, u = 1822.8885, a0 = 52.9177249 pm, and Eh = 27.2113957 eV. For the ground
electronic state X 1Σ+

g we use [4] re = 2.666 Å, De = 12244 cm−1, and a = 1.870 Å−1

(ν̃e = 213.36 cm−1, ν̃exe = 0.14 cm−1). For the excited electronic state B 3Π+
0,u we

use re = 2.971 Å, De = 4112 cm−1, and a = 1.998 Å−1 (σe = 15730 cm−1, ν̃e =

132.11 cm−1, ν̃exe = 1.051 cm−1). The program builds a Hamiltonian matrix using the
difference approximation for the∇2 term. The internuclear separation is defined between
[rmin, rmax] = [4.3, 11] a0 and the number of grid points N is varied between 26 and 211.
Hamiltonian (tri-diagonal) matrix is diagonalized and the obtained eigenenergies are
compared to the analytical formula. The eigenstates are used in computing the Franck–
Condon factors for excitations (v′ ← v′′ = 0–2). A figure is formed, where the X and B

state potentials and some wavefunctions (e.g. ψ
(X)
v′′=0,1,2) are plotted.

8

For the report, check how the solution gets better as N is increased from 64 up to 210

at least. The figures 1–4 (wavefunctions, eigenenergies, Birge–Sponer plot, electronic
spectra) help in this task. For the best solution, tabulate the eigenvalues (9 lowest) of
both states along with the values from the analytic expression. Finally, compare the
intensity of the fundamental IR vibration (1 ← 0) to overtones (2 ← 0) and (3 ← 0).

References

[1] J. Haataja et al., Numeeriset menetelmät käytännössä, CSC–Tieteellinen laskenta
Oy (2002).

[2] R. A. E. Mäkinen, Numeeriset menetelmät, Jyväskylän yliopistopaino (1998).

[3] W. H. Press et al., Numerical Recipes in C – The Art of Scientific Computing,
Cambridge University Press (1992).

[4] I. J. McNaught, J. Chem. Educ. 57, 101 (1980).

9

