RE2 – Optimization of Bioenergy Use GASIFICATION, research

August 16, 2012

Jukka Konttinen University of Jyväskylä Renewable Energy Programme

Gasification research - CONTENTS

- Future challenges \rightarrow to give guidelines to R&D
- Gasification process / modelling
 - Gasification reactivity & behaviour of biomass ash
 - Formation of impurities
 - Combustion of product gas
- Gas cleaning
 - tars, particulates, heavy metals, chlorine, sulfur, nitrogen,...
 - THE MOST CRUCIAL ISSUE FOR ADVANCED APPLICATIONS
- R & D on the catalytic production of liquid biofuels will not be presented here

GASIFICATION

FUTURE CHALLENGES

→ Guidelines to R&D

Future challenges, gasification of biomass

Gasification

- "difficult" fuels (agro biomasses: ash melting/bed material sintering)
- Formation mechanisms of impurities, such as: Waste-type fuels → heavy metals
- Conversion of unconverted char

Biomass combustion processes have the same challenges, but gasification can offer ways to get rid of the problems easier (for example metals can be separated by filtration before the processing of product gas to end products)

Gas cleaning

- Fly ash
- Tar formation and cracking (catalysts)
- Waste-type biomasses and wastes → heavy metals and halogenes
- Fuel-N to NH₃ staged combustion is required
- BIGGEST CHALLENGE: Ultra-cleaning required for advanced applications (IGCC, fuel cells, catalytic synthesis processes)

Process integration/optimization

- Long-term availability needs to be proven
- Operation as a stand-alone plant, fuel availability
- Integration in a pulp mill
- High pressure operation (treatment of solids) and materials
- Economics
 - Price of electricity, price of heat (steam)
 - Price of liquid biofuels produced

Partial combustion of fuel with oxygen brings in the heat

Why modelling?

Design

Simulation

- Minimization&understanding of pollutant formation
- Plant economics / sustainability

UNIVERSITY OF JYVÄSKYLÄ Gasification phenomena & modelling

- External and internal heat transfer
- External and internal mass transfer
- Volume and porosity development
- Drying is controlled by heating rate
- Devolatilization rate correlations need validation by measurements
- Tar formation is based on measurements (little understood)
- Water-gasification reaction
- Boudouard reaction
- Oxygen-gasification
- Shift conversion

 $\begin{array}{l} \mathsf{C} + \mathsf{H}_2\mathsf{O} \to \mathsf{CO} + \mathsf{H}_2\\ \mathsf{C} + \mathsf{CO}_2 \to 2\mathsf{CO}\\ \mathsf{C} + \frac{1}{2}\mathsf{O}_2 \to \mathsf{CO} \text{ (normally negligible)}\\ \mathsf{CO} + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{CO}_2 + \mathsf{H}_2 \end{array}$

Järvinen, M. P., 2002, Numerical modeling of the drying, devolatilization and char conversion processes of black liquor droplets. Doctoral Dissertation, Acta Polytechnica Scandinavica, Mechanical Engineering Series No. 163, Espoo 2002, 77 p. E. Vakkilainen

GASIFICATION MODELLING -EXAMPLES OF RESEARCH

Processes in FB gasifiers

Gómez-Barea, A. and Leckner, Bo, 2010, Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, Vol. 36, No. 4, August 2010, pp. 444 - 509.

E. Vakkilainen

Surface mesh colored by solid velocity magnitude

Water-gas reaction [kg/m3s] C + H2O -> CO + H2

LUT-modelling for

FOSTER

Profile of the Average Gas Composition

→ H20 → H2 → CO2 → CO → CH4 → O2

Lappeenranta University of Technology

Gasifier simulations at LUT Summary

- First demonstration calculation of a CFB gasifier was performed by threedimensional furnace model CFB3D.
- The results are promising: visualization of the process helps to understand the different phenomena and can be used to support the development of gasifier designs.
- The applied reaction rate correlations are based on literature and thus the results are only indicative.
- Many other empirical model parameters are rough estimates as well.
- Validation studies are necessary for improving the prediction capability of the model.

BIOFUEL GASIFIER FEEDSTOCK REACTIVITY – EXPLAINING THE DIFFERENCES AND CREATING PREDICTION MODELS

- In the project, a method is generated to predict the gasification behavior of biomass fuels in a gasification reactor
 - The method should be based on reasonable cost and effort
- The results of the project will help to understand the differences in the gasification behavior of biomass fuels.
 - An essential hypothesis in the project is that the decrease of the catalysis properties of biomass ash will decrease biomass char gasification reactivity and thus the final carbon conversion
- Partners University of Jyväskylä, VTT and Åbo Akademi University

Research in gasification "CARBON CONVERSION PREDICTOR"

Carbon conversion predictor results

Victoria, Canada, 2004)

BIOFUEL GASIFIER FEEDSTOCK REACTIVITY – EXPLAINING THE DIFFERENCES AND CREATING PREDICTION MODELS

There are several subprojects with different objectives:

- a) Tests with thermogravimetric analyzer to generate the experimental data.
 - Several biomass fuels with industrial interest will be selected
 - Samples will be taken during testing from the original fuels and from their leftovers after testing.
 - Also some tests will be interrupted to take samples from partly reacted materials
- b) SEM analysis and chemical fractionation of the samples taken in subproject a)
- c) Determination of kinetic parameters

d) The addition of kinetic parameters as parts of the Carbon Conversion Predictor. Modeling efforts with the predictor to simulate the behavior of the fuels in a large-scale fluidized bed gasifier

e) Gasification experiments (2-4 h) with 3 selected fuels in a bench-scale gasifier. The comparison of results with the lab-scale results and with the prections of the Carbon Conversion Predictor.

Ash related problems

- Ash-related problems including sintering, agglomeration, deposition, erosion and corrosion are the main obstacles to economical and viable applications of biomass gasification technologies.
- Alkali metals, such as potassium, react readily with silica, even at temperatures far below 900 °C, by breaking the Si–O–Si bond and forming silicates or reacting with sulfur to produce alkali sulfates.
- The alkali silicates and sulfates have melting points even lower than 700 1C and tend to deposit on the reactor walls and leave a sticky deposit on
- the surface of the bed particles, causing bed sintering and defluidization.
- The presence of ash such as alkali in syngas can cause problems of deposition, corrosion and erosion for equipment that utilizes syngas such as a gas turbine.

Wang, Lijun ; Weller, Curtis L. ; Jones, David D. and Hanna, Milford A., 2008, Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and bioenergy, Vol. 32, No. 8, November 2008, pp. 573 – 581. E. Vakkilainen

 \langle

Syngas cleaning and processing

Contaminant	Examples	Problems	Cleanup method	
Particulates	Ash, char, bed material	Erosion, plugging	Filtering, scrubbing	
Alkali metals	Sodium (Na) and	Hot corrosion, catalyst	Cooling, absorbtion,	
	potassium (K)	poisons	condensation, filtering	
	compounds			
Heavy metals and trace	Mercury (Hg), Arsenic	Catalyst poisons	Condensation, filtering,	
elements	(As), Cadmium (Cd),		guard beds, scrubbing	
	Lead (Pb), Tellurium		("ultra-cleaning")	
	(Te),			
Fuel-bound nitrogen	Mainly NH ₃ and HCN	NO _x formation in gas	Scrubbing, selective	
		combustion	catalytic reduction	
Tars	Reactive aromatics	Filter plugging, internal	Tar cracking/reforming,	
		condensation and	scrubbing	
		deposition		
Sulphur, chlorine	HCl and H ₂ S (and some	Catalyst poisons,	Limestone or dolomite,	
	COS)	corrosion, gaseous	zinc-based guard beds,	
		sulphur emissions	scrubbing, absorption	

Modified from the source: Bridgwater, A. et al.: An Assessment of the Possibilities for Transfer of European Biomass Gasification Technology to China. Part 1. Report of Mission to China. 1998, 65 p.

Hot ash removal and gas cleaning

- Ash can be removed by cyclones, bag filters, baffle filters, ceramic filters, fabric filters, rotating particle separators, wet electrostatic precipitators and water scrubbers.
- Water scrubbing and wet electrostatic precipitation are unattractive due to their economics and the environmental pollution of residue water.
- Most mechanical methods; fabric filters, rotating particle separators and water scrubbers, can operate only at low temperatures (i.e., <200 °C).
- Hot gas cleaning improves energy efficiency
- Char and other particles in hot syngas can be removed using ceramic filters, which can be operated up to a temperature of 600 °C.
- However, ceramic filters are used mainly for particle removal from highpressure gas because the pressure drop through ceramic filters is high.

Wang, Lijun ; Weller, Curtis L. ; Jones, David D. and Hanna, Milford A., 2008, Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and bioenergy, Vol. 32, No. 8, November 2008, pp. 573 – 581.

FORMATION OF TARS -EXAMPLES OF RESULTS

Typical ranges of producer gas composition for selected gasifiers

		Low temperature atm. steam blown dual fluidized bed gasifier ¹⁾	Low temperature press. oxygen blown fluidized bed gasifier ²⁾	High temperature press. oxygen blown entrained flow gasifier ³⁾
H ₂	%	35 - 40	23 - 28	29 - 35
со	%	25 - 30	16 - 19	35 - 44
CO ₂	%	20 - 25	33 - 38	17 - 22
CH4	%	9 - 11	10 - 13	<1
N ₂	%	<1	<5	<5

Biomass tar formation temperature

3

Open your mind. LUT. Lappeenranta University of Technology

	Range (°C)	Products	
Primary	400 – 600	Acids, phenols, ketones, guaialcols, furans, furfurals	
Secondary	600 - 800	Phenols, heterocyclic ethers monoaromatic hydrocarbons	
Tertiary	800 - 1000	Non-substituted polyaromatic hydrocarbons	>

Brown, David ; Gassner, Martin ; Fuchino, Tetsuo and Maréchal, François, 2009, Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems. Applied Thermal Engineering, Vol. 29, No. 11-12, August 2009, pp 2137 - 2152.

Elimination of tars from gasification gas

- Tars are formed in the thermochemical processing of fuel, due to incomplete conversion of fuel carbon and hydrogen
- If not reduced, tars can go downstream the gasification/syngas processing line and condense → blockages of valves, filters or catalysts
- Tars can be reduced using catalytic metal oxide materials, via the hydrocarbon reforming reaction:

 $C_nH_{2n+2}+nH_2O\rightarrow nCO+(2n+1)H_2$

Tar removal processes

- Air or steam can be used to reduce tar
- High temperature reduces tar
- Filtering with ceramic filters
- Scubbing with water or solvents
- Packed bed filtering
- Thermal cracking (>1000 °C)
- Catalytic conversion

E. Vakkilainen

FORMATION OF HEAVY METALS -EXAMPLES OF RESULTS

Sources:

-Konttinen, J.; Backman, R.; Hupa, M.; Moilanen, and Kurkela E.: Trace element behaviour in the fluidized bed gasification of solid recovered fuels A thermodynamic study. Åbo Akademi University, Process Chemistry Centre, Combustion and Materials Chemistry, Report 05-02, Åbo Akademi University, 2005. ISBN 952-12-1510-0.

-Konttinen et al. 19th International Conference on Fluidised Bed Combustion, Vienna, Austria, 2006

EU Council directive on incineration of waste containing fuels

Emission limits: Cd + Tl totaltwice Hg twice Sb + As + Co + Cr + Cu Pb + Mn + Ni + V totaltwice

0.05 mg/m³n (measurement a year) 0.05 mg/m³n (measurement a year)

0.5 mg/m³n (measurement a year)

0.5 mg/m³n in flue gases \approx **4.2 mg/kg dry fuel**

Heavy metals in woody biomass

Trace element and heavy metal contents (mg/kg dry matter) of timber (heartwood) collected from various parts of Finland, compared with the contents in whole wood.

		Timbe	Wood (Phyllis 2000)						
Element		Cit	ty of						
	Iisalmi	Riihimäki	Tornio	Harjavalta	Min	Max	Average		
Cl	20	10	10	20	10	11890	590		
Hg	< 0.1	< 0.1	< 0.1	< 0.1	0	2	0,1		
Cd	< 0.05	0.07	0.17	0.12	0	3	0.7		
Sb	< 2	< 2	< 2	< 2	0	4	0.8		
As	< 1	< 1	< 1	< 1	0	6.8	1.4		
Co	< 4	< 4	< 4	< 3	0.1	6	1.9		
Cr	< 4	< 4	< 4	< 3	0.4	130	24		
Cu	< 4	< 4	< 4	< 3	0.3	400	22		
Pb	< 1	< 1	< 1	< 1	0.2	340	30		
Mn	102	54	97	55	7.9	840	181		
Ni	< 4	< 4	< 4	< 3	0.4	540	29		
Zn	8,9	7.0	11	9.6	2.2	130	50		
T1	< 2	< 2	< 2	< 1	-	-	-		
Sn	< 2	< 2	< 2	< 1	0.3	10	1.7		
V	< 4	< 4	< 4	< 3	0.2	23	4.3		
Fe	66	9	270	437	6	3600	227		

Source: Moilanen, A., Academic Dissertation, Åbo Akademi University, 2006

Heavy metals in solid recovered fuel (SRF)

Elemental analysis and fuel characteristics of SRFs produced in plants ET, F and Ew from source separated wastes from the cities of Jyväskylä, Pietarsaari and Lahti. Dry and energy wastes are included for comparison (Juvonen & Moilanen 2002, Moilanen et al. 2005, LHV = Lower heating value, % = weight %, d = dry matter, ar = as received).

SRF/Waste	C1	s	Ν	$Na + K^*$	Metallic	Hg	Cd	Sb	As	Co	Cr	Cu	Pb	Mn	Ni	Zn	T1	Sn	V	Р	Fe	Moisture	Ash	LHV	С	Н
					Al																					
				%, d								m	g/kg,	d								%, ar	%, d	MJ/kg, ar	%, d	i i
ET/Jyväskylä	0.63	0.16	0.7	0.43	0.18	0.23	2.5	- 54	29	370	77	1400	530	210	260	250	<5	140	18	880	11500	26.2	43.4	9.47	29.5	3.8
ET/Pietarsaari	1.04	0.12	0.9	0.47	0.58	0.11	5.0	18	4.0	20	65	650	220	120	82	440	<5	110	<6	940	2400	35.2	14.5	13.15	51.1	7.1
ET/Lahti	0.49	0.10	0.5	0.16	0.19	0.15	2.3	13	8.1	77	35	210	50	60	250	230	<5	12	<70	430	1400	15.7	8.6	18.73	54.0	7.4
F/Jyväskylä	0.76	0.10	0.5	0.38	0.63	0.6	1.3	19	5.6	2.0	120	192	80	103	21	937	<1	96	4	437	2227	23.0	9.7	16.68	52.3	7.2
F/Pietarsaari	0.82	0.08	0.6	0.37	0.87	0.29	0.43	25	3.7	1.6	67	451	287	71	5.0	180	<1	183	4	453	857	24.2	9.4	16.44	52.2	7.3
F/Lahti	0.34	0.06	0.4	0.17	0.16	0	0.33	19	3.0	1.1	16	153	250	27	4.0	88	<1	247	<4	187	873	11.8	7.3	19.92	53.7	7.4
Ew/Jyväskylä	1.04	0.24	0.5	0.40	0.84	0.31	9.4	48	5.9	3.9	96	987	150	113	14	377	<1	32	6	633	2900	2.2	12.8	21.49	51.6	7.1
Ew/Pietarsaari	0.96	0.13	0.5	0.35	0.83	0	1.6	16	5.5	4.2	70	753	62	88	20	683	<1	13	- 5	620	1363	2.7	9.4	22.45	53.8	7.6
Ew/Lahti	0.85	0.08	0.3	7.5	0.18	0.3	2.1	19	3.6	2.0	50	163	34	- 59	15	127	<1	12	- 5	280	2270	1.7	8.6	22.64	54.0	7.5
Waste from stores	1.04	0.06	0.3	0.21	0.07	< 0.09	3.0	3.4	<4	0.8	48	60	18	15	<7	110	<1	43	<4	180	550	18.1	2.6	26.39	71.8	10.2
Dry waste from Jyväskylä	1.03	0.18	1.5	0.65	0.48	0.5	5.2	16	<4	3.0	340	32	- 54	37	5.7	240	≤ 2	15	<6	460	840	31.5	7.6	15.24	56.7	7.4
Dry waste from Pietarsaari	1.04	0.12	0.9	0.47	0.58	0.11	5.0	na.	na.	na.	na.	na.	na.	na.	na.	na.	na.	na.	na.	na.	na.	35.2	14.5	13.15	51.1	7.1
Energy waste from Lahti	0.65	0.06	0.7	0.19	0.23	< 0.1	5.3	<10	<10	5	20	30	20	25	<10	95	<1	10	<4	220	685	33.9	6.6	15.11	56.2	7.8

Source: Moilanen, A., Academic Dissertation, Åbo Akademi University, 2006

Gasifier and gas cooling equilibium modelling

Source: Konttinen et al. 19th Int. Conf. on FBC, Vienna, Austria, 2006

The ÅAU thermodynamic database "Basgas" for gasification conditions

- 35 elements

oxidizing and reducing conditions

- C, H, O, N (inert), S, CI, Br*, F, P
- Ca, Mg, K, Na, AI, Si, Fe.....main ash components
- As, Cd, Cr, Cu, Co, Hg, Mn, Ni, Pb, Sb, *TI**, V......EDD
 *Ba**, *Be**, Mo, *Se**, Sn, Ti, Zn.....other trace elements
 **Element not included in this calculation*
- 200 heavy metal gaseous species
- 250 heavy metal stoichiometric compounds
- 17 solutions incl. SiO₂ melt with
 - CaO, MgO, K_2O , Na₂O, Al₂O₃, Fe₂O₃
 - + As_2O_{3} , Cr_2O_{3} , Cu_2O , MnO, NiO, PbO, ZnO, S, Cl

Some of the stoichiometric heavy metal compounds

Cr5S6(s) Cr6S7(s) Cr2(SO4)3(s) Mn2SiO4(s) Mn2Al4Si5O18(s) Mn3Al2Si3O12(s) MnHPO4(s) MnS(s) MnS2(s) MnSO4(s) MnCl2(s) Co3O4(s) Co(OH)2(s) CoCO3(s) (CoO)2(SiO2)(s) CoS2(s) Co3S4(s) CoSO4(s) CoCl2(s) CoCl2(H2O)2(s) CoCl2(H2O)6(s) (CoO)(Cr2O3)(s) (CoO)(Fe2O3)(s) NiO(s) Ni(OH)2(s) NiCO3(s) (NiO)(Al2O3)(s) Ti(s) TiH2(s) TiC(s) TiO(s) TiO2(s) Ti2O3(s) V3O5(s)

FeCr2O4(s) (MnO)(Fe2O3)(s) CoO(s) Ni2SiO4(s) Ni2P2O7(s) Ni3(PO4)2(s) Ni3S4(s) Ni6S5(s) NiSO4(s) NiCl2(s) (NiO)(Cr2O3)(s) (NiO)(Fe2O3)(s) CuO(s) Cu2O(s) Cu(OH)2(s) CuCO3(s) CuP2(s) Cu3P(s) Cu2P2O7(s) Cu3(PO4)2(s) CuS(s) Cu2S(s) CuSO4(s) Cu2SO4(s) (CuO)(CuSO4)(s) (CuO)(Fe2O3)(s) (Cu2O)(Fe2O3)(s) TiAl(s) TiAl3(s) VO(s) VO2(s) VO2(s2) V2O3(s) V2O4(s)

NiS(s) NiS2(s) Ni3S2(s) CuFeS2(s) Cu5FeS4(s) ZnO(s) Zn(OH)2(s) ZnCO3(s) Na2O2Zn(s) ZnAl2O4(s) Zn2SiO4(s) ZnSO4(s) ZnO(ZnSO4)2(s) ZnCl2(s) Ca2ZnSi2O7(s) ZnFe2O4(s) As2O3(s) As2O5(s) As2S2(s) As2S3(s) Cu3(AsO4)2(s) Zn3(AsO4)2(s) MoO2(s) MoO3(s) Mo(CO)6(s)(Na2O)(MoO3)(s) (MgO)(MoO3)(s) V407(s) (Na2O)(V2O5)(s) (Na2O)2(V2O5)(s) (Na2O)3(V2O5)(s) (MgO)(V2O5)(s) (MgO)2(V2O5)(s) VOSO4(s)

CuCl(s) CuCl2(s) CuFeO2(s) MoS2(s) MoS3(s) Mo2S3(s) (FeO)(MoO3)(s) CdO(s) Cd(OH)2(s) CdCO3(s) (CdO)(Al2O3)(s) (CdO)(SiO2)(s)Cd3(PO4)2(s) CdS(s) CdSO4(s) SnO(s) SnO2(s) SnS(s) SnS2(s) Sn2S3(s) Sn3S4(s) SnSO4(s) Sn(SO4)2(s)SnCl2(s) SbO2(s) Sb2O3(s) Sb2O4(s) VCI3(s) (CaO)(V2O5)(s) (CaO)2(V2O5)(s) (CaO)3(V2O5)(s) Mn3O4(s) MnCO3(s) Al2MnO4(s)

Ca3(AsO4)2(s) Co3(AsO4)2(s) Ni3(AsO4)2(s) Sb2O5(s) Sb2S3(s) Sb2(SO4)3(s) SbCl3(s) SbOCI(s) HgO(s) Hg2CO3(s) HgCl2(s) Hg2Cl2(s) PbO(s) PbO2(s) Pb3O4(s) Pb(OH)2(s) PbCO3(s) (PbO)(PbCO3)(s) Na2O2Pb(s) (PbO)(Al2O3)(s) (PbO)(Al2O3)6(s) (PbO)2(Al2O3)(s) PbSiO3(s) Pb2SiO4(s) (PbO)4(SiO2)(s) PbHPO4(s) PbS(s) VS(s) VS4(s) V2S3(s) CrO2(s) CrO3(s) Cr2O3(s) Cr3O4(s)

CdCl2(s) Cd(OH)Cl(s) Cd3(AsO4)2(s) Pb2S2(s) (PbO)2(PbSO4)(s) (PbO)3(PbSO4)(s) (PbO)4(PbSO4)(s) PbCl2(s) PbClOH(s) Pb4(OH)6Cl2(s) PbCl2(PbCO3)(s) Ca2PbO4(s) PbCa2Si3O9(s) Pb3Ca2Si3O11(s) Pb8CaSi6O21(s) Pb(MnO4)2(PbO)3(s) PbFe4O7(s) PbFe10O16(s) Pb2Fe2O5(s) Pb2FeSi2O7(s) Pb2Fe2Si2O9(s) Pb10Fe2Si2O17(s) PbZnSiO4(s) Pb2ZnSi2O7(s) Pb8ZnSi6O21(s) (PbO)(MoO3)(s) Hg(liq) Cr5O12(s) Cr8O21(s) Cr(CO)6(s) Na2CrO4(s) (Na2O)(Cr2O3)(s) (MgO)(Cr2O3)(s) CrS(s)

O3PbS(s) PbSO4(s) PbOPbSO4(s) HgS(s) HgSO4(s) Hg2SO4(s) Sn(s) Sb(s) As(s) Cd(s) Pb(s) V(s) Mn(s) Co(s) Ni(s) Cu(s) Zn(s) Mo(s) Cr(s) Cr2S3(s) Cr3S4(s) CrCl2(s) CrCl3(s) K2CrO4(s) CaCr2O4(s) MnO(s) MnO2(s) Mn2O3(s) VCI2(s) MnSiO3(s) V2O5(s)

Source: Konttinen et al. 19th Int. Conf. on FBC, Vienna, Austria, 2006

))

UNIVERSITY OF JYVÄSKYLÄ

Measured cases (VTT) for comparison											
	CFB 1997/38A	CFB 2000/38A2	BFB 2002/10B	BFB 2002/10C2							
Fuels	wood waste	REF pellets wood pellets	REF	REF							
Bed	limestone	sand limestone	sand limestone	sand limestone							
Sorben	t no	Ca(OH) ₂	no	Ca(OH) ₂							
T _{bed} [°C	940	890	840	850							
P [bar]	1.1	1.1	1.1	1.1							
λ	0.34	0.25	0.40	0.40							

Source: Konttinen et al. 19th Int. Conf. on FBC, Vienna, Austria, 2006

Summary of heavy metal species

Vaporization degree of different inorganic elements as function temperature at cooling and cleaning section conditions of waste fuel gasification (Modelling results of CASE B conditions). (Konttinen et al., 2005).

Weight percentages of condensed metals (EDD-elements and zinc) after cooled product gas (420°C) conditions of the pilot plant balance BFB2002/10C2. Comparison between filter ash contents and equilibrium calculation result (Case B)

Source: Konttinen et al. 19th Int. Conf. on FBC, Vienna, Austria, 2006

Sulfur removal from gasification gas

- Fuel sulfur forms mainly gaseous H₂S and some traces of COS and CS₂
- Solid sorbent materials can be added in fluidized-bed gasification
 - Calcium-based sorbents (limestone, dolomite) can be used, but their sulfur removal efficiency (thermodynamic properties) are not good for biomass applications
- More effective metal oxide sorbents have been developed (Fe, Zn, Ni, Cu,...)
- Regenerable sulfur removal processes
 - The once sulfided sorbent can be oxidised to release sulfur as SO₂ in a separate reactor
 - Durability of sorbent materials in continuous cycling is still a challenge
- For advanced gasification applications (fuel cells, catalytic synthesis processes) a separate sulfur guard ultra-cleaning step is required

Elimination of nitrogen species from gasification gas

- Fuel nitrogen forms mainly gaseous NH₃ and some traces of HCN
 - Conversion of fuel-N to NH3 and HCN can be as high as 90 %
 - Some biomass fuels relatively rich in nitrogen (agro biomasses, such as alfalfa)
- If not reduced, and the gasification product gas is combusted, will form considerable amounts of nitrogen oxides NO_x
 - NOx emissions can be reduced with staged combustion

Gasifier gas combustor

Brink et al. Åbo Akademi 2004

7

CFD representation

Nitrogen chemistry in combustion

Coda Zabetta et al. Åbo Akademi 2000

Results

2

 \mathcal{D}

2

Brink et al. Åbo Akademi 2004

Results

	Measurem	ents		Calculations					
O ₂ vol-%	NO _x ppm _v	Nf > NO yield %	O ₂ vol-%	NO ppm _v	Nf > NO yield %				
4.8	362	21	4.5	406	22				
2.2	343	18	2.1	399	19				

Brink et al. Åbo Akademi 2004

Future challenges, gasification, CHECKLIST

Gasification

- "difficult" fuels (agro biomasses: ash melting/bed material sintering)
- Formation mechanisms of impurities, such as: Waste-type fuels → heavy metals
- Conversion of unconverted char
- Elevated pressures, oxygen gasification of solid fuels

Biomass combustion processes have the same challenges, but gasification can offer ways to get rid of the problems easier (for example metals can be separated by filtration before the processing of product gas to end products)

Gas cleaning

- Fly ash
- Tar formation and cracking (catalysts)
- Waste-type biomasses and wastes → heavy metals and halogenes
- Fuel-N to NH₃ staged combustion is required
- BIGGEST CHALLENGE: Ultra-cleaning required for advanced applications (IGCC, fuel cells, catalytic synthesis processes)

Process integration/optimization

- Long-term availability needs to be proven
- Operation as a stand-alone plant, fuel availability
- Integration in a pulp mill
- High pressure operation (treatment of solids) and materials

Economics

- Price of electricity, price of heat (steam)
- Price of liquid biofuels produced

One (wild) idea?!

Nuclear power \rightarrow electricity \rightarrow H₂O separation \rightarrow H₂ + 0.5 O₂

 \rightarrow O₂ to gasification \rightarrow syngas production (CO + H₂)

 \rightarrow H₂ and syngas combined (H₂/CO = 2) \rightarrow producing liquid biofuels

-Advantages (According to Idaho National Laboratory, USA, 2009)

- 2.5 times more liquid biofuels yield than with gasification alone
- replacing fossil raw oil TOTALLY in producing liquid transport fuels !?