

# Finlands peat resources, use of peat and after-use of cut-away peatlands

Vapo Oy Jyväskylä 17.8.2011 Olli Reinikainen



## Vapo's head office



Vapo's head office moved from Helsinki to Jyväskylä in 1973.



### Vapo Group

 The Vapo Group consists of the parent company Vapo Oy and it's four business areas are:

Vapo Biofuels
Vapo Bioheat,
Vapo Timber Oy
Vapo Environment

 The parent company Vapo Oy is owned by the Finnish State (50,1%) and the Suomen Energiavarat Oy (49,9%).





# Vapo's operations







Peat secures our energy self-sufficiency - in all circumstances.



# From firewood forests to sawmills and peatlands

1945 Finland was heated by logs, made and transported by 30 000 men and 12 000 horses.

Today peat has a major role in guaranteeing the production of power and district heat in Finland.







#### Peat and its' characteristics

**Peat is biomass** which is formed on mires where annual growth of plants only partially decays and remaining part accumulates as peat.

# Photosynthetic Fixation CO2-C CH4-C Photosynthetic Fixation Aerobic Decay Reoxidation Summer Water Table Anaerobic Decay



Gas Pathways:



### **Use of peatlands in Finland**

Total area 9.39 million ha











# Characteristics of peat Peat layers and their age



#### **Surface layer**

- ✓ slightly decomposed moss peat
- √ age 0-1000 years

#### **Central layer**

- ✓ moderately decomposed peat
- √ age 1001-5000 years

#### **Bottom layer**

- ✓ well decomposed peat
- √ age 5001-8000 years

# Influence of decomposition to visual appearance and microstructure

H 2-3 H 4-5 H 6-7







# Characteristics of white peat Physical properties

# Strongly based on the structure of Sphagnum moss





# Characteristics of white peat Physical properties:

- ➤ Total porosity, about 95%
- ➤ Big specific surface area, about 200 m²/g
- ➤ High liquid binding ability, 600-800 l/m³
- **≻Low volume weight, about 200 kg/m³**



### Characteristics of white peat

Chemical properties:

- Organic material; ash content < 5%</p>
- Carbon content about 50%, C/N 30-50
- Contains organic compounds with high molecular weight
   →humus compounds -- → biologically active compounds
- Low pH, about 4
- Low electrical conductivity (water soluble salts, nutrients)
- High gas absorbing capacity (e.g. ammonia, malodours)
- High nutrient binding capacity
- High buffer capacity



### Characteristics of peat

different peat qualities → different uses

 Peat is fibrous, porous, organic material which has low ash content and volume weight







**Decomposition of peat** 

increases





#### **Peat resources in Finland**

#### **ENERGY PEAT IN FINLAND (Potential)**

- \* 23.7 billion m3 in situ
- \* energy content is about 12 800 TWh (GTK 2010)

#### OIL RESERVES IN NORWEY (Drilled)

- \* 1008 million tonnes crude oil
- \* energy content of about 11 700 TWh (World Energy Council 2009)

#### LIGHT PEAT TYPES

\* 5.9 billion m3 in situ



### **Stages in Peat Production**













### Use of energy peat

In Finland peat is used about in 100 power plants

Peat is used in electric production and heating of society

Homes of 1 million people is heated by peat and wood





### Sources of total energy in Finland

#### Total energy consumption 2010



**♥** VAPO

### District heat production

#### Fuels used in district heat production 2010



Energy Statistics - Yearbook 2011, Energy

19



JyU visit

# Development of fuel consumption in production of district heat and CHP



#### The advantages of co-firing biomass and peat



- When biomass is co-fired, calculated CO<sub>2</sub>- emissions are lower
- The ash of biofuels captures sulphur and decreases SO<sub>2</sub>emissions
- Treatment of biofuels on power plants is challenging compared to traditional systems

 Better control in fuel availability (different conditions during different period of the year)





- Peat is balancing the fluctuation of biofuels quality (combustion technical properties, eg. moisture, calorific value, characteristic of the ash etc.)
- Peat reduces the fouling of the boiler (cleans heating surfaces), hot-corrosion risks and ensures fluidicing properties (decreasing substantially the maintenence and operating costs of the plant)



JyU visit C



# Peat moss — versatile applications, other than energy













### Peat in agriculture

- Crop husbandry cultivation
  - Peat as soil improver
- Animal husbandry
  - Solid manure → Bedding material for cattle, poultry, pigs and horses
  - Animal slurry 

     Absorbent for animal slurry (Lietu-apparatus)
  - Composting of manure







# What is the mutual factor for these pictures?









# The answer is:

# All are former peat production sites



# What after peat harvesting?





# The influence of topography and hydrology on the after-use of cut away-peatlands



#### **Pump-drainage**



### Further landuse of cut-away peatlands

Wet conditions, the mire bottom lower than surrounding watercourses





Rewetted former peat harvesting field





A lake in a former peat harvesting field





Sphagnum growth 55 years after peat harvesting

JyU visit

OR



### Further landuse of cut-away peatlands

Wet conditions, the mire bottom lower than surrounding watercourses

Wetland and bird lake in Hirvineya









# Mire regeneration of a former peat production area



At the end of peat harvesting



Damming of the area



Same area 5 years later

#### Mire regeneration on former peat extraction site



**Extraction site** 



2 years after extraction



1 year after extraction



3 years after exrtaction

### Mire regeneration, Shagnum moss production











### Further landuse of cut-away peatlands

Dry conditions, even, stonefree area → arable farming













### Further landuse of cut-away peatlands

Dry conditions, the number of boulder (stones) can be high



Just after peat production



Same area 11 years later



25 years old forest (different place)



# Cut-away peatland → afforestation examples

#### Hirvineva peatland



7 years after ash fertilization front: no ash applied



The same area 3 years later



# Cut-away peatland → afforestation examples

#### Hirvineva peatland



Area after peat harvesting

The same area 7 years later

**₩**VAPO

## Intensive production of energy wood on cut-away peatland



**Natural** afforestation with ash fertilization



15.8.2012





Willow





JyU visit



# Thank you!

