

Bed Material Quality Operating Conditions Agglomeration Behavior in Fluidized Bed Combustion Systems

Franz Winter

Institute of Chemical Engineering, Vienna University of Technology

Background & Motivation

- Fluidized bed technology is suitable for combustion as well as gasification of various solid fuels.
- Stabile fluidization is essential for the conversion process;
 therefore the choice of the bed material is of high importance.
- Testing the fluidization behavior of different bed materials
- Testing the agglomeration potential of selected materials by emergency shut-down experiments and by analytic measurements.
- Main goal: to find out which bed materials show best application behavior for a fluidized bed combustion system

Materials

Properties of investigated materials

*) no data available, #) varying shape and density

	particle	particle size [µm]		composition(selection)[MA%]							
name	density $ ho_P$ [kg/m³]	min.	max.	SiO ₂	MgO	Fe ₂ O ₃	AI_2O_3	Cr ₂ O ₃	NiO	K ₂ O	
sand A	2650	560	2000	95,05	<0,03	0,25	2,59	<0,03	*	1.82	
sand B	2650	800	1600	99,25	<0,03	0,04	0,28	<0,03	*	0,08	
olivine A	3300	250	800	41,5	49,7	7,3	0,49	0,3	0,32	*	
olivine B	3300	800	2000	41,5	49,7	7,3	0,49	0,3	0,32	*	
used bed material	2650	500	1800	bed material + ash, additives							
bituminous coal	*	around 5000									
paper-mill sludge	#	#	#								

Materials

a. Silica sand

Sand A [560-2000] µm

Sand B [800-1600] µm

b. Olivine

Olivine A [250-800] µm

Olivine B [800-2000] µm

Materials & Fuels

Used bed material

originally from Sand A [560-2000] µm

bituminous coal

paper-mill sludge

Methods

- The fluidization- as well as agglomeration experiments were carried out in a laboratory-scale fluidized bed unit which is electrically heated up to 900° C.
- To simulate a scenario which shows high agglomeration potential, defluidization tests, like during an emergency shut-down of a combustor, were carried out.
- Analytical measurements on the pure and used sands, as well as the agglomerated particles were carried out by EDX methods. Optical investigations were carried out by using a microscope.
- Fluidization characteristics (e.g. U_{mf}) were calculated and compared to measurement data for monitoring.

Methods

Hot-Fluidization Rig

Lab-scale fluidized bed reactor (reactor diameter: 70mm, height over bed: 850mm, maximum temperature: 900° C, maximum volume flow: 950 NI/min, 450 g bed material, experimental fuel charge: coal, sludge, 2,6 g minute)

Results: Fluidization

bed material comparison at 800°C

- Sand B shows good properties for application as bed material in fluidized bed combustion plants.
- Wide fluidized bed region (about 1 to 4 m/s) and the sharp border to the fixed bed region and the fluidization region.

Results: Agglomeration tests

Agglomeration types generated during different experiments

bed material	agglomeration type					
time 10 min		30 min	60 min			
sand A	none, coal-particles	ash-agglomerates	ash-agglomerates			
			sand-agglomerates			
sand B	none, coal-particles	ash-agglomerates	ash-agglomerates			

Results: Agglomerates formation

$$B = \frac{CaO + MgO}{SiO_2 + Al_2O_3}$$

	coal ashes		reaction		
		ash	product		
basicity B	0,2-0,5	1,0	0,18 - 0,2		
Na ₂ O+K ₂ O	2-4%	1,3%	1-1,5%		

- Basicity and the alkali contents of fuel ashes and agglomerations (reaction product) can be seen as index for the agglomeration behavior.
- The high content allows the building of melting phases at comparable low temperatures of 950-1000°C in the combustion chamber.
- These can be characterized as silica-rich melt with high content of CaO, MgO, FeO, Fe₂O₃, Al₂O₃ and K₂O+Na₂O.
- The formation of glass or crystalline structures in the reaction product refers to cooling conditions.

Results: EDX analysis

- Binocular view and an EDX analysis of melting phases and the reaction products.
- The deposit on the particle which is formed by the reaction products can be seen.
- EDX analyses on the right hand side ensured, that it consists of the chemical compounds CaO, MgO, FeO, Fe₂O₃, Al₂O₃ and K₂O+Na₂O.

Results: Reactor mass balance

	INPUT: total inorganic input to FBC					agglomeration formed out of bed material and "INPUT"				
MA% of input	0,5%	12,7%	6,1%	33,9%	44,8%	2,0%	21%	79%		
paramete r [MA%]	coal ash A	coal ash B	coal ash C	fibre sludge ash	dolo- mite	hydrat ed lime	"INPUT"	bedmat erial	calcul ated	analy sis
SiO ₂	26,10	25,20	35,60	29,04	1,15	0,00	15,88	95,09	78,36	79,00
Al_2O_3	21,12	16,39	23,19	16,22	0,58	0,00	9,38	2,59	4,02	2,55
Fe ₂ O ₃	18,97	23,10	15,77	2,20	0,24	0,00	4,85	0,25	1,22	0,97
CaO	10,22	12,47	6,81	44,96	58,60	100,00	45,50	0,05	9,65	10,55
MgO	7,02	7,62	5,24	2,85	39,01	0,00	(19,76)	0,00	4,17	5,20
K ₂ O	1,23	0,79	1,57	0,88	0,15	0,00	0,57	1,82	1,55	1,01
Na ₂ O	2,25	1,40	1,81	0,43	0,00	0,00	0,45	0,06	0,14	0,12
SO_3	10,90	11,73	8,15	1,03	0,17	0,00	2,47	0,00	0,52	0,44

- Not only fuel ashes are responsible for alkali-input.
- It is the bed material as the mass balance shows.
 Especially the content of K₂O in the pure sand is higher than the one inserted by the "INPUT"

Results: Microscope investigations

Pictures of different investigated sands; a: sand A used in FBC; b: agglomerates of sand A during FBC emergency shutdown; c: sand B, fresh; d: sand B used in FBC – no agglomerates

Results: Olivine

- Olivine used as bed material is said to be more agglomeration resistant. (De Geyter et al.)
- The molten ash layers formed on the particle during the combustion process are rich of Mg and poor of K
- These do not show the low melting eutectics like K rich layers
- if the amount of K in the fluidized bed rises up the agglomeration behavior is quite similar to silica sand.
- the amount of K within the fresh bed material may raise the agglomeration potential of olivine as well.

Conclusions

- Bed material quality has a direct influence on the agglomeration potential during fluidized combustion processes.
- The material type (silica sand, olivine) itself shows different agglomeration behavior, a narrow grain size distribution offers stable fluidization conditions, which can prevent agglomeration.
- Agglomerates formation is reduced by the movement of the particles and is favored during defluidization.
- The analytical investigations of sand A and sand B showed, that the sand quality (e.g. purity, concentration of alkali metal oxides) is affecting the agglomeration behavior significantly.

Conclusions & Outlook

- The major influence is due to contaminations, especially with K, in the fresh bed material, these will increase agglomeration risk.
- Olivine used as bed material is more agglomeration resistant, however contaminations may rise the agglomeration potential.
- The quality of fresh bed material used for fluidized bed combustion is of major importance.

Thank you for your attention!

Int. Conference Impacts of Fuel Quality on Power Production and the Environment

September 23-27, 2012 in Puchberg, Austria

www.fuelqualityimpacts.org

franz.winter@tuwien.ac.at

