

The Concept of Chemical Similarity for Optimization and Design of Gas-Solid Processes

Franz Winter

Institute of Chemical Engineering, Vienna University of Technology

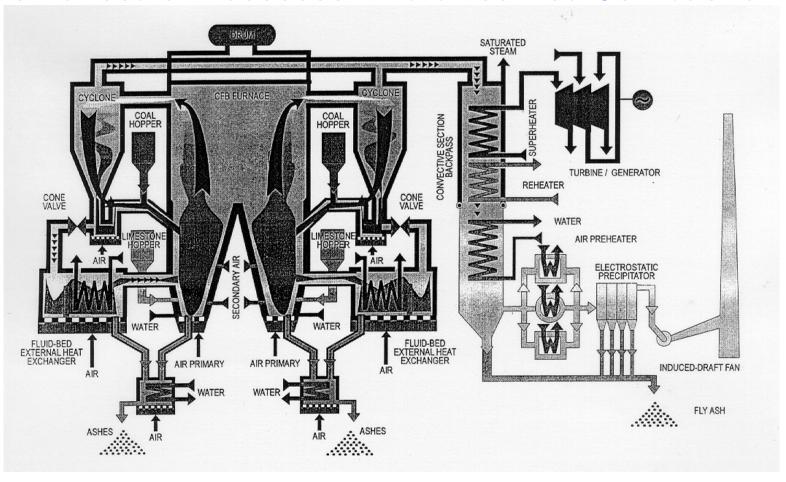
Contents:

- The Principal Problems in Chemical Engineering
- Industrial-scale Processes
- Advantages/Disadvantages of Lab-scale Units
- Laboratory-scale <=> Industrial-scale
- The Traditional Approach
- The Concept of Chemical Similarity
- Example:
- The Importance of Radicals
- From the Single Particle to the Pilot-scale

Principal Problems in Chemical Engineering

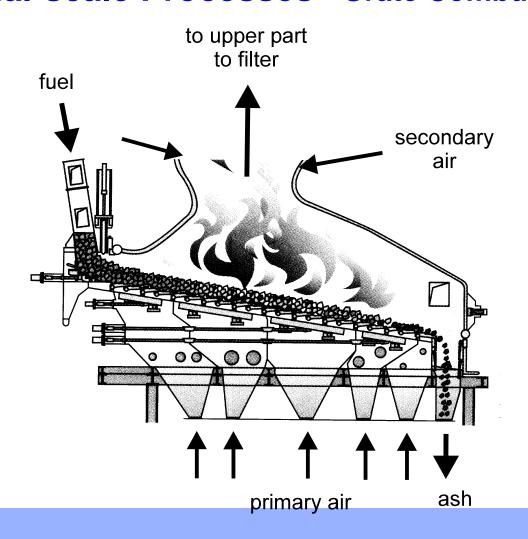
- Reactor/Process Design?
- Operating Conditions?

to achieve:

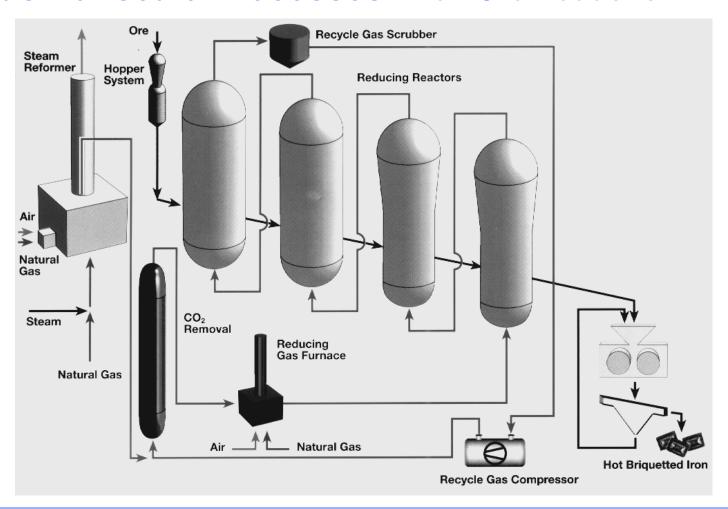

- High Productivity!
- High Quality!

at

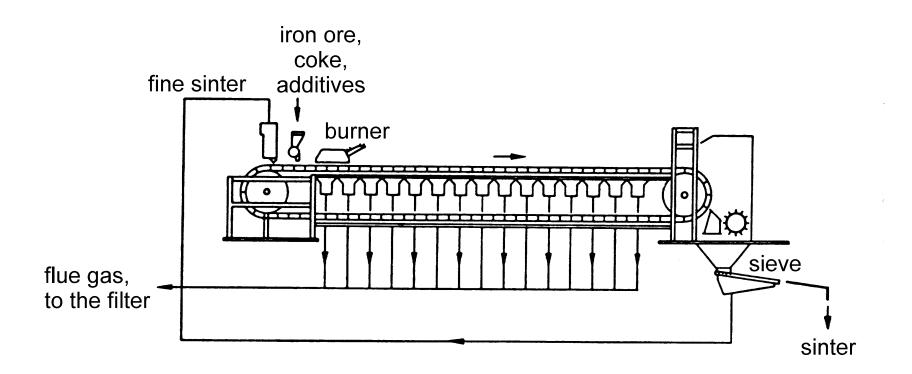
- Clean Environment
- Low Costs
- Short Time



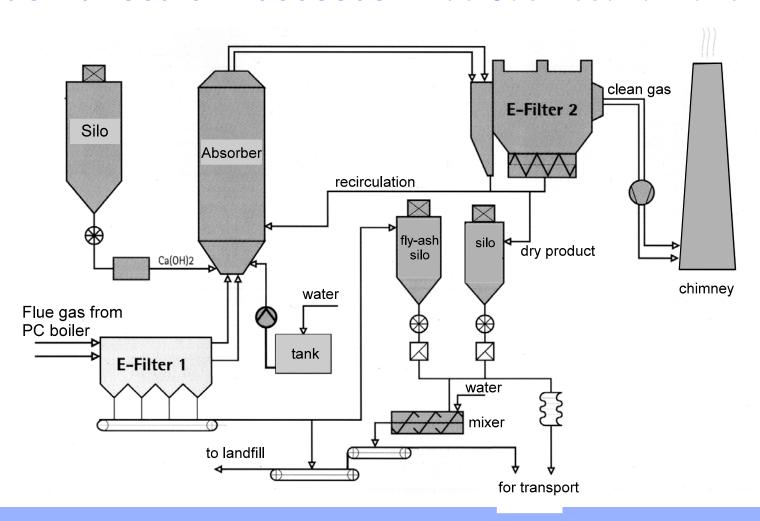
Industrial-scale Processes - Fluidized Bed Combustion



Industrial-scale Processes - Grate Combustion



Industrial-scale Processes - Iron Ore Reduction



Industrial-scale Processes - Iron Ore Sintering

Industrial-scale Processes - Flue Gas Desulfurization

Industrial-scale Processes - Conditions

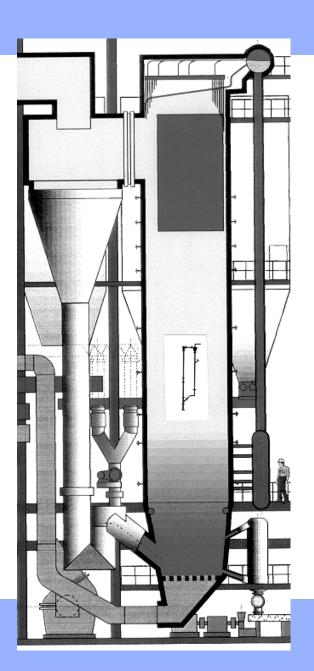
	Combustion			Iron Ore Reduction	Sinter Process	De- sulfurization
techn.	fixed	fluidized	entrained	fluidized	fixed	fluidized
gaseous reactants	O ₂ (air)	O ₂ (air)	O_2 (air)	H ₂ , CO, CH ₄	O_2 (air)	SO ₂ , CO ₂ , HCl
solids' temp.	400-1000	600-950	900-1700	600-900	800-1400	60-150
pressure	atmos	1-17	atmos	~11	atmos	atmos
sup. gas velocity	1-4	1-2.5 3-8	5-10	~1	1 (cold)	1-5
solid reactants	biomass, waste	coals, biomass, waste, sludge	coals, co- comb. with biomass	iron ore	cokes, alternative fuels, met. waste	Ca(OH) ₂

Industrial-scale Processes - Conditions

	Combustion			Iron Ore Reduction	Sinter Process	De- sulfurization
tech- nology	fixed	fluidized	entrained	fluidized	fixed	fluidized
particle size	10-100	1-30 0.5-10	0.010-0.100	0.05-6	0.2-5 (cokes)	0.001-0.01
heating rates	low	medium - high	very high	medium - high	high	low
lab- scale methods	- TGA - fixed bed	-fluid. bed (bubb., circ.)	-entrained -burners -grid heaters -matrix react.	fluidizedbedfixed bed	-fixed bed - fluidized bed	- TGA - fluidized bed (circulating)

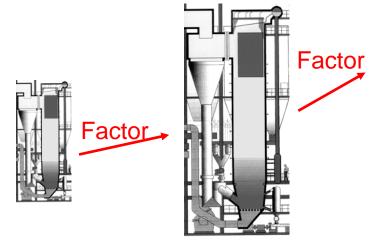
Laboratory-Scale Units

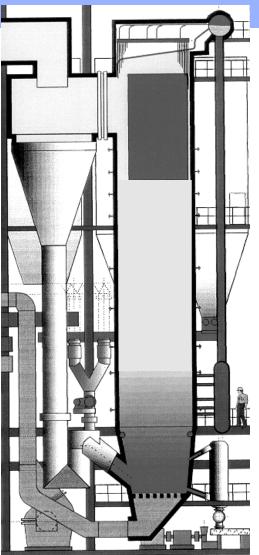
ADVANTAGES:


- inexpensive
- low operation costs
- high availability
- design changes quickly & low cost
- operating conditions broad range
- good instrumentation

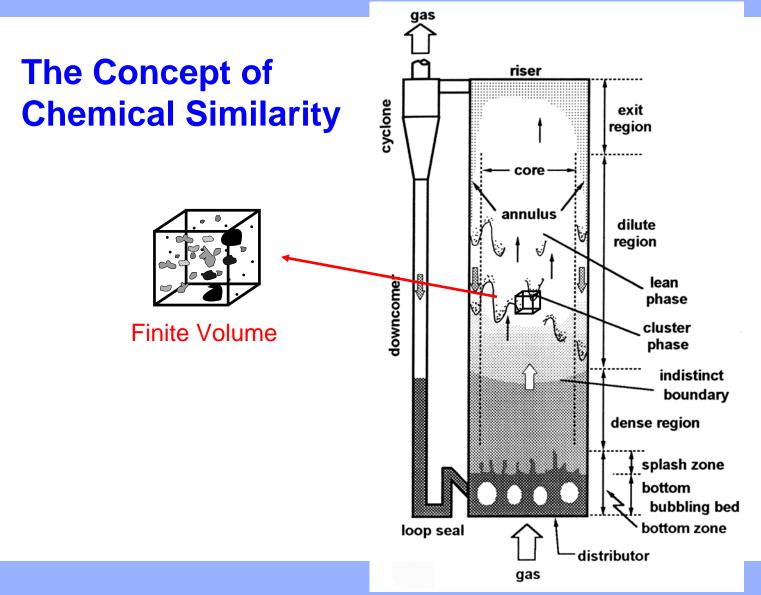
DISADVANTAGES:

 uncertainty to transfer results to industrialscale units




Comparison between Laboratory-scale & Industrial-scale Units

The Traditional Approach



The Traditional Approach

reactor/system	characterizing dimensionless groups			
flow tube	Re, Eu, L/d			
+ particles in flow tube (two phase flow)	+ Re_p , Fr_p , Ar , P/P_p , L/d_p , Ψ , ϕ_s			
+ heat transfer to particles	$+ Nu_p, Pr$			
+ mass transfer to particles	+ Sh, Sc			
+ non-isothermal particles	$+$ Bi_h			
+ concentration profiles in particles	$+$ Bi_m			
+ chemical reactions in flow tube	+ DaI			
+ mixing effects	+ <i>Bo</i> (<i>Pe</i>)			
+ chemical reactions inside particles	$+$ DaII, ϕ			

Chemical Similarity Rules - homogeneous systems

A Pure Homogeneous Reaction System:

At a given time, it is:

- gas temperature (T_g)
- total pressure (P)
- species concentration $(C_1, ..., C_i, ..., C_z)$

$$r_{hom,i} = \frac{dN_i}{dt} \cdot \frac{1}{V_R} = f_{hom,i}(T_g, P, C_1, ..., C_i, ..., C_z)$$

Chemical Similarity Rules - gas-solid systems

A Gas - Solid Reaction System:

in addition:

- the particle temperature (T_p)
- ullet the gas temperature inside the pores of the particle ($T_{g,pore}$)
- the pressure inside the particle (P_p)
- the species' concentrations inside the pores of the particle $(C_{1,p},...C_{i,p},...C_{z,p})$
- the species' concentrations at the surface of the particle $(C_{1,s},...C_{i,s},...C_{z,s})$
- the physical properties of the solid reactant such as external/internal surface area (A_s) , pore structure $(X_{p,pores})$
- the chemical composition of the solid reactant $(X_{p,chem})$

$$r_{het,i,A} = \frac{dN_i}{dt} \cdot \frac{1}{m_{p,A}} = f_{het,A}(T_{p,A}, T_{g,pore}, P_{p,A}, P, A_{s,A}, X_{p,pores,A}, X_{p,chem,A}, C_{l,p,A}, .., C_{l,p,A}, .., C_{l,p,A}, .., C_{l,s,A}, ..,$$

Chemical Similarity Rules - Consequences/Problems

- the actual fuel or solid reactant of the industrial-scale process has to be used in the laboratory-scale
- artificial fuels or solid reactants with well-known compositions can be used as model fuels for the calibration of test units

But even if the same solid reactant is used in laboratory-scale tests different results can be obtained ...

- ⇒ different heating rates of the solid reactant
- ⇒ memory effects and fluctuations of conditions
- ⇒ particle particle interactions

Chemical Similarity - Conclusions

- It is often not possible to fulfill **all** those very stringent similarity rules to derive chemical kinetics in laboratory-scale units.
- However, *useful information* can be obtained, if the researcher is *aware of the problems* in designing laboratory-scale tests. He or she will know the *limitations* and will use the *obtained results* in a *proper way* depending on the *aim* of the work.

Thank you for your attention!

franz.winter@tuwien.ac.at