

Formation & Reduction of Pollutants in FBC: From Heavy Metals, Particulates, Alkali, NO_x, N₂O, SO_x, HCI

Franz Winter

Institute of Chemical Engineering, Vienna University of Technology

Contents

- Co-combustion
- Nitrogen Oxides NO, NO₂, N₂O
- Sulfur Oxides SO₂, SO₃
- HCI, Alkali, Heavy Metals, Dioxins
- Particulates
- Conclusions

Co-combustion

1. General definition:

Firing together

any fuels

in

the same plant.

2. Limited definition:

Firing together

low grade fuel with coal

in

the same plant.

3. Further limited definition – of greatest significance:

Firing together

biofuel, waste with coal

in

in the same combustor

Typical Nitrogen contents of fuels

Analysis (daf)	ANT	LVB	MVB	HVB	SUB	LIG	PT	WD	WPB	SEW	PE
carbon [w-%]	93	87	88	83	67	66	60	50	48	56	85
nitrogen [w-%]	1.2	1.8	1.6	1.5	1.3	1.2	1.5	0.18	2.77	6.3	0.07

ANT - anthracite, LVB - low volatile bituminous coal, MVB - medium volatile bituminous coal, HVB - high volatile bituminous coal, SUB - sub-bituminous coal, LIG - lignite, PT - peat, WD - wood, WPB - wooden pressboard, SEW - sewage sludge, PE - polyethylene.

Conversion of fuel-N to NO

Indirect interactions with halogen chemistry via pool of radicals

CO Oxidation:

$$CO + OH = CO_2 + H$$

Inhibition of radicals:

$$I + I + M = I_2 + M$$
 $I_2 + H = HI + I$
 $HI + OH = H_2O + I$

total: $H + OH = H_2O$

lodine addition to single fuel particle during devolatilization

Winter et al. 1999

lodine addition to single fuel particle during char combustion

Laboratory-scale CFBC at TU-Vienna:

Iodine addition into lab-scale CFBC burning coal

pilot-scale CFBC at CANMET:

Pollutants' concentrations in pilot-scale CFBC burning coal with and without iodine addition

	before o	cyclone			after cyclone				
Run	CO NO N ₂ O HC						N ₂ O	HC	
	(%)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	
15	0.40	93	na	2730	0.05	72	134.5	0	
15I	1.93 ↑	442 ↑	16.5	8310	1.59 ↑	295 ↑	26.5 ↓	7400	

Main parameters

increasing parameters	NO emission	N2O emission
Temperature	<u> </u>	\
Volatile matter content	↓ (BFBC) ↑ (CFBC)	\
Nitrogen content	↑	1
Excess air	↑	1
Air staging	↓	\downarrow
Limestone addition	↑	\downarrow
SO ₂ concentration	↓	1
SNCR	↓	<u></u>

Typical Sulfur contents of fuels

Analysis (daf)	anthracite	coals	lignite	peat	straw	wood	sewage sludge	tire waste	petroleum coke
sulfur [w-%]	1	1	0.5-3	0.5	0.1	0.02	0.8	1.5	5-7

Main reactions

$$CaCO_3 => CaO + CO_2$$
 R1 calcination

$$CaO + SO_2 => CaSO_3$$
 R2 sulfation

$$CaSO_3 + \frac{1}{2}O_2 => CaSO_4$$
 R3 oxidation

Effects on the pool of radicals:

$$SO_2 + H + M \leftrightarrow HSO_2 + M$$
 $HSO_2 + H \leftrightarrow H_2 + SO_2$
 $HSO_2 + OH \leftrightarrow H_2O + SO_2$
 $SO_2 + O \leftrightarrow SO_3$
 $SO_3 + O \leftrightarrow SO_2 + O_2$

Miccio et al. 2001

Phenomenology

Formation of dense CaSO₄ shells limit conversion

Anthony and Granatstein 2001

Heterogeneous catalytic effects with CaO:

(b) Heterogeneous oxiation of HCN and NH₃ over CaO combined with NOx reduction by char

Shimizu et al. 2000

HCI, Alkali, Heavy Metals, Dioxins

Typical Chlorine contents of fuels

Ulitmate Analysis (dry fuel)	hard coals	brown coals	peat	wheat straw	wood	sewage sludge ash	waste wood	Meat Bone Meal
chlorine [w-%]	0.01 – 0.2	0.005 – 0.1	0.01	0.5	<0.01	0.01	0.3	0.35

 $4HC1 + O_2 => 2Cl_2 + 2H_2O$

HCI, Alkali, Heavy Metals, Dioxins

Important reactions, direct interactions

 $Al_2O_3.2SiO_2 + 2MeCl + H_2O => Me_2O.Al_2O_3.2SiO_2 + HCl$

 $\begin{aligned} \text{MeCl} + \text{H}_2\text{O} &=> \text{HCl} + \text{MeOH} \\ \text{2MeCl} + \text{SO}_2 + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 &=> \text{Me}_2\text{SO}_4 + 2\text{HCl} \\ \text{2MeCl} + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 &=> \text{Me}_2\text{CO}_3 + 2\text{HCl} \\ \text{2MeCl} + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 &=> \text{Me}_2\text{CO}_3 + 2\text{HCl} \\ \text{R7} & \text{interaction with CaCl}_2 \text{ and sulfur chemistry} \\ \text{CaCl}_2 + \text{SO}_2 + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 &=> \text{CaSO}_4 + 2\text{HCl} \\ \text{R8} & \text{interaction with CaCl}_2 \text{ and sulfur chemistry} \\ \text{SO}_2 + \text{Cl}_2 + \text{H}_2\text{O} &=> \text{SO}_3 + 2\text{HCl} \\ \text{R9} & \text{interaction with sulfur chemistry, formation of SO}_3 \end{aligned}$

R4

conversion to Cl₂ (Deacon reaction)

R10 interaction with alumina silicates

HCI, Alkali, Heavy Metals, Dioxins

Corrosive salt formation, physical interactions

temperature of flue gases 600~750℃

temperature of superheater tubes 400∼550℃

Otsuka 2008

HCI, Alkali, Heavy Metals, Dioxins

Interaction of chemistry

Otsuka 2008

Particulates

- Particulate Matter (PM) ... ultrafine solid particles, droplets
- PM10, PM2.5 ... harmful to respiratory system
- not much knowledge
- some on-going studies

Conclusions

- In fluidized bed combustors a wide range of fuels is utilized and burned at the same time
- The fuel is the main source for the pollutants formation of NO_x, N₂O, SO_x, HCI, heavy metals and alkali
- Pollutants may lead to difficulties in operation e.g. slagging, fouling and catalyst deactivation and health problems and pollution of the environment

Conclusions

- It has been shown that a strong interaction between the different pollutants' chemistry exists
- Homogeneous reactions in the gas phase (direct and indirect interactions), heterogeneous and catalytic surface reactions (on solid and liquid surfaces) as well as physical processes may be of importance
- There is a significant lack of knowledge considering pollutants' chemistry interactions.

Thank you for your attention!

franz.winter@tuwien.ac.at