Introduction to Anaerobic Digestion Engineering Part 1a

Michael Chesshire

University of Southampton & Evergreen Gas Ltd

EvergreenGas

EvergreenGas

AD Engineering

- <u>Part 1a</u>
- Reactor types and sizing.
- <u>Part 1b</u>
- Plant components mixing, heating, feeding, etc..
- <u>Part 2</u>
- Gas storage & energy conversion
- Mass balance
- Energy balance

EvergreenGas

Feedstock

EvergreenGas

Reactor Type - CSTR or Plug Flow

- CSTR is "Continuous Stirred Tank Reactor", where the digester contents are fully mixed & homogenous, and is the most common form of digester design.
- "Plug Flow" is where the feedstock enters the digester at one end and flows to the opposite end.

EvergreenGas

Southampton

EvergreenGas

Southampton

EvergreenGas

EvergreenGas

Tank Construction

- Reinforced concrete
- Brick
- Steel welded or enamelled
- Plastic e.g. glass reinforced polyester
- Other e.g. wood
- Tank insulation

EvergreenGas

EvergreenGas

Southampton

EvergreenGas

EvergreenGas

Southampton

Evergreen Gas

EvergreenGas

Reactor sizing

Key feedstock parameters:-

- Volume (m³.d⁻¹) or mass (tonne.d⁻¹)
- % dry matter (%DM)
- % organic dry matter (%ODM)
- Biological methane potential (BMP)

EvergreenGas

Rate limiting parameter no.1 (HRT)

- <u>Hydraulic retention time</u>:- HRT (d)
 HRT = reactor volume (m³) ÷ feed rate (m³.d⁻¹)
- Tends to be rate limiting parameter for low solids feedstocks (e.g. <12%DM)
 Reactor volume (m³) = feedstock (m³.d⁻¹) x HRT
- Typical HRT = 20 to 40 days

UNIVERSITY OF

EvergreenGas

Rate limiting parameter no.2 (OLR)

- <u>Organic loading rate</u>:- OLR (kg.m⁻³.d⁻¹)
 OLR = ODM (kg.d⁻¹) ÷ reactor volume (m³)
- Becomes rate limiting parameter for high solids feedstocks (e.g. >12%DM) Reactor volume (m³) = kg_{ODM}.d⁻¹ ÷ OLR
- Typical OLR = 2.5 to 5.0 kg.m⁻³.d⁻¹

UNIVERSITY OF

EvergreenGas

Now Reinhold Waltenberger

EvergreenGas