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ABSTRACT. We study the problem of recovery the source a.t; x/F.x/ in the wave equation in anisotropic medium with
a known so that a.0; x/ 6D 0 with a single measurement. We use Carleman estimates combined with geometric arguments
and give sharp conditions for uniqueness. We also study the non-linear problem of recovery the sound speed in the equation
utt �c2.x/�u D 0 with one measurement. We give sharp conditions for stability, as well. An application to thermoacoustic
tomography is also presented.

1. INTRODUCTION

The purpose of this paper is to give sharp conditions for a recovery of a source term in the wave equation in
anisotropic media modeled by a Riemannian metric by a single boundary measurement. In the process we give a more
geometric treatment of the problem. This linear problem appears as a linearization and actually, as the full non-linear
version, of the problem of recovery a sound speed, given the source. It has applications to thermoacoustic tomography.
We are also inspired by the related works [4, 5, 6], [8, Theorem 8.2.2]. The method in these papers uses Carleman
estimates for hyperbolic inverse problems that originates in the work of [2] who considered the case of the wave
equation with a potential with non-zero initial data.

The main problem that we have in mind is the following. Let c.x/ > 0 and let u solve

(1)

8<: .@2
t � c2�/u D 0 in .0;T / � Rn;

ujtD0 D f;

@t ujtD0 D 0;

where c D c.x/ > 0 and T > 0 is fixed. Let c D 1 outside some domain ˝ with a smooth strictly convex boundary.
Given f , and u restricted to Œ0;T �� @˝, is it possible to reconstruct the speed c? Ideally, we want to do this with data
on a part of @˝, as well. Next, assuming that we can, how stable is this? Clearly, some conditions on f are needed
since when f D 0, for example, we get no information about c. This inverse problem is clearly non-linear.

If we have two speeds c and Qc, then w D Qu � u solves

(2)

8<: .@2
t � c2�/w D a.t;x/F.x/ in .0;T / � Rn;

wjtD0 D 0;

@twjtD0 D 0;

with

(3) F WD Qc2
� c2; a D � Qu:

We consider the more general linear problem of recovery of a function F , given a and w restricted to Œ0;T � � @˝,
or on a part of it. Again, some condition on a is needed since when a D 0 for example, F cannot be recovered. We
actually replace c2� in (2) by the Laplace-Beltrami operator �g related to some metric, plus lower order terms.

Similar problems but for the recovery of a potential or the term p.x/ in r � pr are studied in [4, 5, 6]. A general
abstract theorem of this type is presented in [8, Theorem 8.2.2]. In [6] and [8], the principal part of the wave equation
has variable coefficients, thus the geometry is non-Euclidean. This requires some assumptions on the speed or the
metric. The method of the proof is to use Carleman estimates, and the assumptions are needed to satisfy the pseudo-
convexity condition. Those assumptions are not sharp however. In fact, the proofs are essentially “Euclidean”, and
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roughly speaking, the conditions on the speed or on the metric require that the proof still works under an Euclidean
treatment. Also, one global pseudo-convex function is used. One of the goals of this work is to sharpen those condi-
tions thus extending the results to a larger class of speeds/metrics, formulate them in a geometric way and also prove
local results.

There are many works on related problems, including boundary control, for example, [1, 10, 22, 21]. The conditions
on the metric there are more geometric, requiring existence of a global convex function, or a somewhat general
condition of existence of a global vector filed with certain properties. The proofs are still based on Carleman estimates
but the goal is to recover non-trivial initial conditions, assuming, say, a Neumann boundary condition, and measuring
Dirichlet data on a part of @˝. The conditions on T are formulated in terms of lower bounds of the speed and are not
sharp. The geometry of the rays in those problems however is different than the application that we have in mind —
there are reflections at the boundary. On the other hand, the methods there could probably be adapted to the problems
studied in the works that we cited above.

The pseudo-convexity condition needed for the Carleman estimates that we use is satisfied by assuming that the
region where we prove unique continuation is foliated by a continuous family ˙s of strictly convex surfaces. In case
of data on a part � of @˝, we require those surfaces to intersect @˝ in � . In contrast to the other works in this
direction, we are not trying to construct one strongly pseudo-convex function. Instead, we prove unique continuation
by incremental steps, each time using a different strongly pseudo-convex function.

We describe the results in the paper now. We start in section 2 with the uniqueness Theorem 2.1, that is a version
of [8, Theorem 8.2.2]. The time interval is .�T;T /, there is no initial condition for wt at t D 0, and we study the
problem of unique recovery of F in (2) given Cauchy data on a part of .�T;T / � @˝. We view this theorem more
a as a tool than a goal, and the requirement that the time interval is symmetric about t D 0 will be satisfied later by
studying problems with solutions that have even extensions in t , like (1). In the rest of that section we show two ways
to satisfy the convexity requirement. First, assuming that @˝ is strictly convex, we show in Theorem 2.2 that F D 0 in
some collar neighborhood of @˝ of the kind dist.x; @˝/ � T � 1, as long as the surfaces dist.x; @˝/ D s, s 2 Œ0;T �

are smooth and still strictly convex. The second one is to show that F D 0 in a subset of ˝ that can be foliated by
strictly convex surfaces starting from ones outside ˝, see Theorem 2.3. This only requires Cauchy data on a part of
@˝, where those surfaces intersect @˝, and proves F D 0 in a subdomain. The condition on T is sharp. We give a
few examples.

In section 3 we study the non-linear problem of recovery of the speed c in (1) and the linear one of recovery of the
source F in (2) described above. The time interval is .0;T / now, but the initial condition ut D 0 for t D 0 in (1),
and the requirement that a in (2) has a sufficiently regular even extension in the t variable allow us to use the results
in the previous section. In contrast to the boundary control problems, in the thermoacoustic problem we are given the
Dirichlet data on .0;T / � @˝ or on a part of it but no Neumann data. On the other hand, we know that the solution
extends for x 62 ˝ as a solution again, and the initial data at t D 0 is zero there. This allows us in Lemma 3.1 to
recover the Neumann data from the Dirichlet one in case of data on the whole @˝. Then we extend the solution in an
even way for t < 0 and apply the results in section 2. The main requirement is ˝ to have a foliation of strictly convex
surfaces, and the time interval .0;T / is sharp.

The partial data case, with observations on .0;T / � � , where � � @˝ in the thermoacoustic setting is studied in
Theorem 3.2. The main difficulty is the need to recover the Neumann data there as well. Then one applies directly the
results in section 2. We show that one can recover F , respectively c in some neighborhood of � that might be smaller
compared with the case of having Cauchy data on the whole .0;T / � � . There is a new “cone” condition that might
shrink the domain where we prove F D 0, or respectively Qc D c.

At the end of section 3, we study the stability of the linear and non-linear problems for (1) and (2), respectively. As
a general principle, for stability, we need to be able to detect all singularities, see (51). For the linear problem at least,
this is a necessary and sufficient condition for stability in any Sobolev spaces, see [13]. The corresponding stability
estimates are formulated in Theorem 3.4 and Theorem 3.5.

Acknowledgments. The authors thank Linh Nguyen and Peter Kuchment for fruitful discussions on the mathemat-
ics of thermoacoustic tomography, and for attracting their attention to reference [8, Theorem 8.2.2]. Thanks are also
due to Daniel Tataru for his help to understand better the various unique continuation results. The essential part of this
work was done while both authors were visiting the MSRI in Fall 2010.
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2. A UNIQUENESS RESULT FOR RECOVERY OF A SOURCE WITH ONE MEASUREMENT

Let ˝ be a bounded domain in Rn with a smooth boundary, and let

(4) P D @2
t ��g C

X
j

bj@xj C c

be a differential operator in Q WD .�T;T /�˝ � Rn, where g is a smooth Riemannian metric on ˝, and aj , b, c are
smooth functions on NQ.

The level surface ˙ D f D 0g of some smooth function  is called strongly pseudoconvex w.r.t. the hyperbolic
operator P , if

(i) ˙ is non-characteristic, i.e., j t j 6D jdx j when  D 0, and
(ii) H 2

p > 0 on T � N̋ n 0 whenever  D p D Hp D 0,

where Hp is the Hamiltonian vector field of the principal symbol p D ��2 C j�j2 of P , and � is the dual variable to
t , see, e.g., [19]. Here and below, j � j is the norm in the metric g of a covector or a vector. The second condition says
that ˙ is strictly convex w.r.t. to the null bicharacteristics of p, when viewed from  > 0. In other words, the tangent
null bicharacteristics to ˙ are curved towards  > 0.

The function � with a non-degenerate differential and non-characteristic level set � D 0 is pseudoconvex, if a
condition stronger than (ii) is satisfied. We are not going to formulate that condition; it would be enough for our
purposes to use the well known fact that if the ˙ D f D 0g as above is pseudoconvex, then for � � 1, � D

exp.� / � 1 is a pseudoconvex function, non-degenerate on ˙ , and ˙ D f� D 0g; moreover f� > 0g D f > 0g.
For details we refer to [19].

Let � be strongly pseudoconvex in NQ w.r.t. P . Then it is well known that for all u 2 C 2
0
.Q/,

(5) �

Z
e2��

�
u2

t C jruj
2

C �2
juj

2
�

dt dx � C

Z
e2��

jPuj
2 dt dx; � > 1;

see [19, 8, 7].
To reformulate condition (ii) in the tangent bundle, recall that the metric g provides a natural isomorphism between

covectors and vectors by the formula ˚ W .x; �/ 7! .x; v/, where �i D gij .x/v
j , in local coordinates, where v is a

vector at x. For any function  on T �˝, one gets a function ˚� on T˝. Let q D j�j2=2 be the “x part” of p,
rescaled for convenience. It is known that Hq D ˚�G˚�, where G is the generator of the geodesic flow. Also, the
energy level q D 1=2 is pushed forward to the unit sphere bundle S˝.

We have Hp=2 D ��@t C Hq , therefore,

1

4
H 2

p D .�@t � Hq/
2 :

Identify covectors with vectors by the map ˚ , to get that condition (ii) is equivalent to

(6)  D 0;  t � G D 0 H) .@t � G/2 > 0 for .t;x/ 2 Q, j�j D 1;

and we used the fact that p D 0 implies �2 D j�j2, as well as the homogeneity properties of G w.r.t. �.
Let us look for  of the type

 D r2.x/ � ıt2
� s; 0 < ı < 1;

with s a parameter, Then to satisfy (ii), it is enough to have

(7) G2.r2=2/ > ıj�j2:

Since we want eventually to take the limit ı ! 1 to get sharp results, we arrive at the condition

(8) G2.r2=2/ � j�j2:

It is enough to have this inequality in the x-projection of ˙ in N̋ , as the first condition in (6) indicates. Note that this
guarantees (ii) only, we still have to choose r so that (i) holds. The latter is equivalent to

(9) jd.r2=2/j 6D ıjt j on ˙ \ NQ:
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Example 1. Let r.x/ D jx � x0j in Rn with some fixed x0; then  D jx � x0j2 � ıt2 � s. Then

G2.r2=2/ D .� � rx/
2
jx � x0j

2=2 D j�j2;

and (8) holds. Condition (9) is satisfied for s > 0 because jd.r2=2/j2 D jx � x0j2 D ıt2 C s > ı2t2. Then ˙ is a
hyperboloid of one sheet.

More generally, let r.x/ D �.x;x0/, where � is the distance in the metric g. This is the function that has been
used in the Riemannian case. It satisfies (7) for r � 1 only, in general. For metrics of negative curvature, there is no
restriction, see [12].

In this paper, @=@� denotes exterior normal derivative to @˝.

Theorem 2.1. Let Q D .�T;T / �˝, and

(10) @
j
t a 2 C. NQ/, j � 2, F 2 L2.˝/, and @j

t @
˛u 2 L2.Q/, j � 3, j˛j � 1:

Let u be a (non-unique) solution of

(11)
�

Pu D a.t;x/F.x/ in .�T;T / �˝;

ujtD0 D 0 in ˝

Let � be a strongly pseudoconvex function in NQ. Let

(12) G � .�T;T / � @˝; � < 0 on ..�T;T / � @˝/ n G; and �.t; �/ � �.0; �/ for jt j < T :

Let supp F � K, where K � N̋ is compact, and

(13) a.0; �/ 6D 0 on K:

If

(14) u D @u=@� D 0 on G;
then

F D 0 in fxI �.0;x/ > 0g:

Proof. We follow the proof of [8, Theorem 8.2.2]. Set Q" D Q \ f� > "g. Fix " > 0, and let � 2 C 1 be such that
� D 1 in Q", and supp� � NQ0. We will apply the Carleman estimate (5) to @j

t �u, j D 0 and j D 2, by shrinking
Q0 to Q" on the left. We are using the fact here that u has zero Cauchy data on G. Then @j

t �u can be approximated
by C 1

0
.Q/ functions in the H 2 norms, see also the remark following the proof. We have

P@
j
t �u D @

j
t .�Pu C ŒP; ��u/ D @

j
t .�aF C ŒP; ��u/ ;

where the commutator ŒP; �� is a differential operator of order 1. Since � D 1 on Q", we get

�

Z
Q"

e2��
�
�2

juj
2

C �2
jut t j

2
C jut t t j

2
�

d� � C

0@Z
Q

e2��
jF j

2 d� C

Z
QnQ"

e2��

2X
jD0

X
j˛j�1

j@
j
t @

˛
t;xuj

2 d�

1A(15)

� C

Z
Q

e2��
jF j

2 d� C Ce2�";

where d� D dt d Vol.x/ is the natural measure on Q. We will estimate the first term in the r.h.s. above. From equation
(11) and is initial condition, ut t .0; �/ D a.0; �/f . By the assumptions on a, jF j � C jut t .0; �/j. By (12),

(16)
Z

Q

e2��
jF j

2 d� � 2T

Z
˝

e2��.0;�/
jut t .0; �/j

2 d Vol.x/:

This integral admits the estimateZ
˝

e2��.0;�/
jut t .0; �/j

2 d Vol.x/ D �

Z T

0

Z
˝

@

@s

�
e2��.s;�/

jut t .s; �/j
2
�

d Vol.x/ ds C

Z
˝

e2��.T;�/
jut t .T; �/j

2 d Vol.x/

� C

Z
Q

e2��
�
� jut t j

2
C ��1

jut t t j
2
�

d� C C;



RECOVERY OF A SOURCE OR A SPEED 5

because �.T; �/ � 0, and by the Cauchy inequality. This inequality, together with (16), estimate the integral of the first
term in the r.h.s. of (15). Therefore,

�

Z
Q"

e2��
�
�2

juj
2

C �2
jut t j

2
C jut t t j

2
�

d� � C

�
��1

Z
Q

�
�2

jut t j
2

C jut t t j
2
�

d� C e2�"

�
:

Split the integration on the right into Q" and Q n Q". For � � 1, the integral over Q" will be absorbed by the l.h.s.
On Q n Q", we have e2�� � e2�". Therefore,

�

Z
Q"

e2��
juj

2 d� � Ce2�"; for � � 1:

Thus, Z
Q"

e2�.��"/
juj

2 d� � C=�; for � � 1:

Since � � " � 0 in Q", letting � ! 1, we get u D 0 in Q". Since " > 0 is arbitrary, we get u D 0 in Q. This proves
the theorem. �

The following lemma will allow us below to apply the proof of the theorem to a larger class of non-smooth bound-
aries.

Lemma 2.1. Let D � Rn be open, and assume that near each point x0 2 @˝, D is represented by y � 0 and z � 0,
where y, and z are functions with non-zero differentials, satisfying the following condition

if fy D 0g and fz D 0g intersect, then fy D 0g n fz D 0g is dense in fy D 0g.

Let u 2 C 2. ND/ has Cauchy data 0 on @D in the sense that extended as 0 outside D, it still belongs to C 2. Then u can
be approximated by C 2

0
.D/ functions in H 2.Rn/.

Proof. Let � 2 C 1
0
.R/ be such that � D 1 near 0. Set locally, near x0 2 @D,

u" D .1 � �.y="//.1 � �.z="//u:

Using a partition of unity, we define such u" 2 C 1
0
.D/. We claim that u" ! u in H 2.Rn/, as " ! 0C. Take the

second derivatives of u � u" to see that we need to show that the following terms converge to 0 in L2.Rn/:

"�1�0.y="/u; "�2�00.y="/u; "�2�0.y="/�0.z="/u;

where we used the fact that the derivatives of y and z are bounded. We list terms involving lower powers of "�1 and
derivatives of u, which analysis is similar. Similarly, we will not analyze the zero and the first order derivatives of
u". Since y=" and z=" are bounded on the support of �0.y="/ and �0.z="/, respectively, we may replace the leading
coefficient "�1 in the first term by y�1, etc. Since u D 0 for z D 0, and dy 6D 0, we have u D zu1, where u1 is
a smooth function. Next, u1 D 0 for y D 0 at least when z 6D 0. That set of y’s however is dense in fy D 0g by
assumption. By continuity, u1 D 0 for y D 0. Thus u1 D yu2 with u2 smooth, therefore, u D zyu2. Now, the proof
of the claim follows from the fact that �00.y="/ tends to 0 in L2.Rn/; and this is also true if we replace �00 by �0 or
�. �

We recall next a unique continuation result due to Tataru [18], see also [15, Theorem 4]. Assume that a locally H 1

function u solves the homogeneous wave equation Pu D 0 (near the set indicated in (17) below) and vanishes in a
neighborhood of Œ�T;T � � fx0g for some x0 and T > 0. Then

(17) u.t;x/ D 0 for jt j C dist.x0;x/ < T:

One can formulate a uniqueness continuation statement along a curve in the x space.

Proposition 2.1. Let Œ0;T � 3 � 7! c.s/ be a smooth curve in Rn so that c.0/ D x0 for some x0, and � is a unit speed
parameter in the metric g. Let u D 0 near Œ�T;T � � fx0g. Then

(18) u.t;x/ D 0 near f.t;x/I x D c.�/; jt j � T � �g;

provided that u solves the homogeneous wave equation Pu D 0 near that set.
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FIGURE 1. Theorem 2.2

The proof of the proposition is contained in the proof or [16, Theorem 6.1]. The idea is to cover the curve c with
small balls and to prove unique continuation step by step.

Next theorem in fact follows from Theorem 2.3 below but its proof is simpler, and serves as a basis for the proof of
Theorem 2.3. We refer to Figure 1 for an illustration.

Theorem 2.2. Assume that @˝ is strictly convex. Let T > 0 be such that xn WD dist.x; @˝/ is a smooth function in
˝ with non-zero differential for 0 � xn � T ; and fxn D sg, 0 � s < T are strictly convex surfaces. Let u solve
(11) and the function a satisfies (13) for 0 � xn � T . Assume also the regularity conditions (10). Then if u has zero
Cauchy data on .�T;T / � @˝, we also have

(19) F.x/ D 0 for x 2 ˝, dist.x; @˝/ < T :

Proof. Let .x0;xn/ be normal boundary coordinates near @˝ with s0 fixed. Here xn is the signed distance to @˝ so
that xn > 0 in ˝. The function xn is defined in a small neighborhood of @˝ while x0 are local coordinates near some
boundary point. The metric g then takes the form

g˛ˇ.x
0;xn/dx˛dxˇ

C .dxn/2;

˛; ˇ � n � 1. Given f .x/, independent of the dual variable � , we have

(20) G2f D

�
� i @

@xi
� � i

jk�
j�k @

@� i

�
�` @

@x`
f D

@2f

@xi@xj
� i�j

� � i
jk�

j�k @f

@xi
:

Here, � n
jk

D �
1
2
@gjk=@x

n is the second fundamental form II > 0 of the level sets of xn, w.r.t. the chosen orientation,
and it is zero when either i D n or j D n. Assume now that f is a function of xn only. Restrict (20) to @˝ D fxn D 0g

to get

G2f
ˇ̌
xnD0

D

�
@2f

@.xn/2
.�n/2 � II.x0/.� 0; � 0/

@f

@xn

� ˇ̌̌
xnD0

:

To satisfy (8) for f D r2=2, we need

(21)
@2f

@.xn/2
� 1; �

@f

@xn
� R for xn

D 0;

where 1=R is the minimum over @˝ of the smallest eigenvalue (principal curvature) of the second fundamental form
II. We can think of R as the largest curvature radius of @˝; and by assumption, 0 < R < 1. Then the following
function satisfies (8):

r.x/ D R � xn;

because then f WD r2=2 D .R � xn/2=2 clearly satisfies (21). Therefore, the function

(22)  s.t;x/ WD .R � xn/2 � ıt2
� s

is strongly pseudoconvex, assuming also that  s D 0 is non-characteristic. Also, the last inequality in (12) holds. Note
that in Example 1, if @˝ D fxI jxj D R0g, then xn D R0�jxj, and one can choose R D R0. Then D jxj2�ıt2�s,
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which is the phase function in the example. As in the example, we can show that f s D 0g is non-characteristic for
s > 0. In fact, we will work locally near xn D t D 0, and s D R, and clearly,  s is non-characteristic there.

Fix 0 < " � 1, and let 0 < xn < ". We restrict s to the interval .R � "/2 � s � R2. This choice of the phase
function corresponds to pseudoconvex surfaces given by

(23) .R � xn/2 � ıt2
D s; .R � "/2 � s � R2; 0 � xn

� " < R:

In Rt � N̋
x , this restricts t to jt j D O.

p
"/, see also (24) below. We will apply Theorem 2.1 with a the phase function

�s WD exp.� s/ � 1, � � 1, with s as in (23). On G WD .�T;T / � @˝, we have  sjxnD0 D R2 � ıt2 � s. To have
�s < 0 outside G, we need  s < 0 there, and therefore R2 � ıT 2 < s for all s as in (23). Therefore, if

(24) T >

q
R2 � .R � "/2 D

p
2"R C O."2/;

always true when " � 1, we can apply the theorem for ı < 1 close enough to 1. Therefore, we get that if u has
zero Cauchy data on .�T;T / � @˝ with T as in (24), then F.x/ D 0 for  s.0;x/ > 0 for any s as before, i.e., for
0 � xn < ". Note that this does not prove the theorem yet, even when T is small enough so that we can have equality
in (24) with some " satisfying the smallness requirements. The reason is that we get F D 0 in a much smaller region:
0 � xn � " instead of 0 � xn � T because for small ", we have T �

p
" � ". Also, T � 1 when R is large, i.e.,

when @˝ is close to a flat surface at some point and direction. In other words, the price that we pay with T to push
supp F by " depends on the (largest) radius of the curvature of @˝, and this is not what we are trying to prove. We will
use this argument as an incremental step only, and will prove the theorem by applying a finite number of such steps.

To get the sharp time T , not necessarily small, we notice that we just proved that if u has zero Cauchy data on
.�T;T / � @˝ with T as in (24) and " � 1, then F.x/ D 0 for x 2 ˝, dist.x; @˝/ < ". Then Pu D 0 in the same
domain and jt j < T , by (11). By unique continuation, see Proposition 2.1,

(25) u.t;x/ D 0 for x 2 ˝, dist.x; @˝/C jt j < T , dist.x; @˝/ � ":

In particular,

(26) @˛
xu.t;x/ D 0 for x 2 ˝, dist.x; @˝/ D ", jt j < T � ", j˛j � 1;

provided that T > ".
Let Q" be the supremum of all " for each the following statement holds: if u has zero Cauchy data on .�T;T /� @˝,

then F.x/ D 0 when dist.x; @˝/ < ". Then Q" has that property as well. If Q" < T , then by the argument above, see
(26), u has zero Cauchy data on .�T C Q";T � Q"/ � @˝. Then we can repeat the argument leading to (25) to reduce
suppf even further, and this would contradict the choice of Q". Therefore, Q" D T . �

Recall that given two subsets A and B of a metric space, the distance dist.A;B/ is defined by

(27) dist.A;B/ D sup.dist.a;B/I a 2 A/:

This function is not symmetric in general, and the Hausdorff distance is defined as

distH.A;B/ D max .dist.A;B/; dist.B;A// :

Let ˝1 c ˝ be another domain so that @˝1 is given by dist.x; @˝/ D " � 1. Let ˙s , s1 � s � s2 be a continuous
family of compact oriented surfaces in ˝1. Examples include also surfaces that are not closed in N̋ but can be
extended as closed ones in the larger domain ˝1. By a continuous family, we mean a family so that the Hausdorff
distance distH.˙s; ˙s0

/ tends to 0, as s ! s0, 8s0. We assume that each ˙s divides ˝1 in two (open) parts: one, in
the direction of the normal giving the orientation, that we denote by ˙ int

s ; and another one that contains @˝1, that we
denote by ˙ ext

s .
Let � � @˝ be a relatively open subset of @˝. Set

(28) G WD f.t;x/I x 2 �; 0 < t < �.x/g ;

where � is a fixed continuous function on � . This corresponds to measurements taken at each x 2 � for the time
interval 0 < t < �.x/. One special case is �.x/ � T , for some T > 0; then G D Œ0;T � � � .

Theorem 2.3. Let ˝1, G, and ˙s be as above. Let u solve (11) and have zero Cauchy data on G. Let the regularity
conditions (10) and the ellipticity condition (13) be satisfied on K WD .[˙s/ \ N̋ . Assume that
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ΓΓ

Σs

FIGURE 2. An illustration to Theorem 2.3 and its proof. Left: the family˙s . Right: The “inductive”
step of the proof. The r.h.s. curve is ˙s; the doted one to the left is at distance " from ˙s .

(a) supp F � ˙ int
s1

,
(b) ˙s \ N̋ is strictly convex for any s,
(c) ˙s \ .@˝ n � / D ; for any s.

Assume that

(29) for any x 2 ˙s \ N̋ , there is y 2 � so that �.y/ > dist.x;y/:

Then

(30) supp F \˙s D ; 8s:

Proof. In this proof, we regard F as a function supported in N̋ . Fix s 2 Œs1; s2�, and assume that

(31) supp F � ˙ int
s :

Then for any x 2 ˙s \ N̋ , �.x/ > dist.x;y/ for some y 2 � . By the unique continuation statement of Proposition 2.1,
u has zero Cauchy data on ˙s \ N̋ for jt j � 1, and by assumption, this is also true on � .

Let xn be a boundary normal coordinate to ˙s positive in ˙ int
s . Let  .t;x/ be as in (22), and " > 0 be as in the

proof of Theorem 2.2. The function � D exp.��/, � � 1, is guaranteed to be pseudoconvex only for x in an O."/

neighborhood of ˙s \ N̋ , and for jt j D O.
p
"/, if " � 1, by (b). We apply Lemma 2.1 to the set D D ˙ int

s \˝ to
conclude by (b) and (c), that F D 0 in some neighborhood of ˙s \ N̋ , see Figure 2.

Let now s0 be the supremum of all s 2 Œs1; s2� for which (31) holds. The latter set is non-empty, by (a). By the
continuity of s 7! ˙s , (31) holds for s D s0. Indeed, assuming that (31) does not hold for s D s0, we can find
0 < " � 1, so that (31) does not hold for s0 � " � s � s0. That contradicts the choice of s0 to be the least upper
bound. On the other hand, by what we proved above, s0 cannot be an upper bound, unless s D s2. This completes the
proof. �

Remark 2.1. The meaning of condition (29) is to guarantee that any point x where we want to prove F.x/ D 0 is
reachable from � (from some point y) at a time not exceeding �.y/. In other words, there is a “signal” (a unit speed
curve) issued from x that will reach the observation part � of @˝ at a time while we are still making measurements
there. By finite speed of propagation, it is a necessary condition, as well.

Remark 2.2. A sufficient but an easier to formulate condition to replace (29) is

(32) G D Œ0;T � � � with T > max
s

dist.˙s \ N̋ ; � /;

see (27). An even simpler sufficient condition is

(33) G D Œ0;T � � � with T > dist.˝; � /:
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2.1. Examples.

Example 2. Let ˝ � R2 be a bounded domain, and let g be a metric on N̋ . Assume that @˝ is convex in the metric,
and that there is x0 2 @˝, so that all geodesics issued from @˝, pointing into N̋ , exit N̋ after some fixed time. That
property does not depend on the way we extend g outside N̋ . All simple (see [14] for a definition) .˝;g/ have this
property, and all non-trapping convex ones have it, too. We will show that in this case we can cover N̋ by a foliation
of smooth surfaces (curves, actually) ˙s that are a small perturbation of the geodesics through x0.

y0

FIGURE 3. Example 2

Extend g in a small neighborhood ˝1 of N̋ , and let y0 62 N̋ be close to x0 so that the geodesics through y0 have
the same property but in ˝1. Choose global coordinates in the latter as normal coordinates centered at y0. In those
coordinates, the geodesics through y0 are the lines, i.e., they solve x00 D 0. Let at each x, J be the rotation operator in
the tangent space given by Jv D .�v2; v1/, where we used the standard index raising/lowering convention, and vector
Jv is identified with the covector on the r.h.s. Given 0 < ı � 1, define the curves ˙s as solutions of x00 D �ıJx0.
The parameter s measures the angle of the initial direction at y0 with a fixed direction. Then ˙s are strictly convex
when viewed from the side determined by the normal Jx0. In Figure 3, this is the upper side. We can always extend
the curves ˙s to closed ones with the extension being outside ˝. Assume now that u has zero Cauchy data. Then
we can apply Theorem 2.3 to conclude that F D 0 when T is appropriately chosen. A possible choice of T is the
diameter of N̋ , given by max.dist.x;y/I x;y 2 N̋ /. To optimize T , we can consider a similar family, with ı negative.
In Figure 3, they are shown as dashed curves. Then the “interior” and the “exterior” are reversed. The two families
converge to the set of the geodesics through y0, as jıj ! 0. Then the value for T enough to apply the theorem can
be obtained by finding a geodesic 0 through y0 so that maximum of the distances from 0 \ N̋ to the upper and the
lower side of @˝ is maximized; then T is that value.

Let ˝ be an ellipse, and let g be Euclidean. If y0 is one of the vertices on the major (minor) axis, then 0 is the
major (minor) axis, and it is enough to take T to be a half of the length of the major (minor) axis.

Example 3. Let˝ � R2 be as above. Assume that there exists a closed non-self-intersecting geodesic 0 of the metric
g. Assume that the region between @˝ and 0 can be foliated by a continuous family of strictly convex curves ˙s .
Then supp F is contained inside 0, if T D dist.0; @˝/. Our analysis does not allow us extend the equality F D 0

inside.

Example 4. Let ˝ � R2 be diffeomorphic to a disk, and let � be a relatively open connected part of @˝. Fix a
metric g in some neighborhood of N̋ . We do not need to assume that the whole @˝ is convex but we will assume that
there is a continuous family of geodesics, with endpoints outside N̋ , covering the region between � and the geodesic
connecting the endpoints of � , see also Figure 2. In Figure 5, this is the unshaded region. The latter assumption
is fulfilled if for example one of those points has the property that all geodesics issued from it, and pointed inside
˝, leave the unshaded region after some fixed time. In particular, .˝;g/ being non-trapping suffices. Then we can
perturb those geodesics to curves that are convex (bending to the shaded region), as in Example 2 to show that when
T is chosen in an appropriate way, supp F must be in the shaded region.

An higher dimensional analog of this example would be ˝ diffeomorphic to a ball with � � @˝ diffeomorphic to
a disk on @˝. Then F D 0 in the region covered by families of convex surfaces. For example, let ˝ be the ellipsoid
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γ
0

FIGURE 4. Example 3

Γ

FIGURE 5. Example 4

P
.xi/2=a2

i D 1, and let g be Euclidean. Let � D @˝ \ fx1 > C g with 0 < C < a1. Then F D 0 in˝ \ fx1 > C g,
and it is enough to choose T D a1 � C . That T may or may not be sharp, depending on all aj and C .

3. A NON-LINEAR PROBLEM OF RECOVERY OF A SPEED WITH ONE MEASUREMENT. APPLICATIONS TO
THERMOACOUSTICS

In section 2, we showed that one can uniquely recover f when t varies over a symmetric interval Œ�T;T �, and
ujtD0 is known. No knowledge of ut jtD0 is required. Assume now that t varies over the interval Œ0;T �, and a, u admit
even extensions for t 2 Œ�T;T � of regularity as in the preceding section. In particular, this means that ut jtD0 D 0. In
other words, u solves

(34)

8<: Pu D a.t;x/F.x/ in .0;T / �˝;

ujtD0 D 0 in ˝;
ut jtD0 D 0 in ˝;

compare with (2). Then one has obvious corollaries of the results of the previous section that we are not going to
formulate. One can interpret those results as a recovery of a source, given a. If a D 1, then one can differentiate
the equation above w.r.t. t and to reduce the problem to recovery of an initial condition for the homogeneous wave
equation, that is the classical thermoacoustic problem of recovering f given�f , see (35) below, with a known speed.

3.1. The thermoacoustic model. Let u solve the problem (1) where c D c.x/ > 0 is smooth and T > 0 is fixed.
Note that the wave equation is solved in the whole Rn now.

Assume that f is supported in N̋ , where ˝ � Rn is some smooth bounded domain. Assume also that c D 1

outside ˝. This is not an essential assumption; it is enough c to be known and fixed outside ˝. The measurements
are modeled by the operator

(35) �f WD ujŒ0;T ��@˝ :
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The problem is to reconstruct the unknown c and f , if possible. We will study now the case when f is known, and
we want to reconstruct c.

3.2. Uniqueness results for the linear problem. Let .c; f /, . Qc; Qf / be two pairs, and let u, Qu be the corresponding
solutions of (1). Then

(36)

8<: .@2
t � c2�/. Qu � u/ D . Qc2 � c2/� Qu in .0;T / � Rn;

. Qu � u/jtD0 D 0;

@t . Qu � u/jtD0 D 0:

Then �
Q� ��

�
f D . Qu � u/

ˇ̌
Œ0;T ��@˝

:

We have

(37) .ı�/f WD
�

Q� ��
�
f D w

ˇ̌
Œ0;T ��@˝

;

where w solves (2) with F and a as in (3). Then supp F � N̋ , and given the regularity of c and Qc, we also have F D 0

on @˝. The measurement (37) however determines the Dirichlet data on Œ0;T � � @˝ only. The Neumann data can be
recovered from that however, see also [16, sec. 7], and Lemma 3.1 below. We emphasize again that w solves the wave
equation for x in the whole Rn, and this is what allows us to recover the Neumann data.

We assume below that w solves the more general problem

(38)

8<: .@2
t ��g/w D a.t;x/F.x/ in .0;T / � Rn;

wjtD0 D 0;

@twjtD0 D 0;

where g is a smooth Riemannian metric that is Euclidean outside ˝. In some of the results below, we do not assume
that F and a are given by (3).

We introduce the energy space associated with the wave equation below, to be able to deal both with metrics and
variables speeds. Write the metric g as g D c�2g0, where c.x/ > 0. In the thermoacoustic case, one usually takes
g0 to be Euclidean. Let �g0

be the Laplace-Beltrami operator as above but related to g0. Modulo lower order terms,
c2�g0

and �g coincide. Write P in the form

(39) P D @2
t � A; A D c2�g0

C lower order terms;

compare with (4). Notice first that c2�g0
is formally self-adjoint w.r.t. the measure c�2d Vol. Given a domain U , and

a function u.t;x/, define the energy

EU .t;u/ D

Z
U

�
jrxuj

2
0 C c�2

jut j
2
�

d Vol0.x/;

where jrxuj0 is the norm in the metric g0, and d Vol0 is the volume measure w.r.t. g0 as well. In particular, we define
the space HD.U / to be the completion of C 1

0
.U / under the Dirichlet norm

(40) kf k
2
HD

D

Z
U

jrxuj
2
0 d Vol0.x/:

It is easy to see that HD.U / � H 1.U /, if U is bounded with smooth boundary, therefore, HD.U / is topologically
equivalent to H 1

0
.U /. If U D Rn, this is true for n � 3 only. By the finite speed of propagation, the solution with

compactly supported Cauchy data always stays in H 1 even when n D 2. The energy norm for the Cauchy data Œf1; f2�,
that we denote by k � kH is then defined by

kŒf; f2�k
2
H D

Z
U

�
jrxf1j

2
0 C c�2

jf2j
2
�

d Vol0.x/:

This defines the energy space
H.U / D HD.U /˚ L2.U /:

Here and below, L2.U / D L2.U I c�2d Vol0/. Note also that

(41) kf k
2
HD

D .�Af; f /L2 :
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The wave equation then can be written down as the system

(42) ut D Au; A D

�
0 I

A 0

�
;

where u D Œu;ut � belongs to the energy spaceH. The operator A then extends naturally to a skew-selfadjoint operator
on H. We denote by U.t/ the group exp.tA/. In this paper, we will deal with either U D Rn or U D ˝. In the latter
case, the definition of HD.U / reflects Dirichlet boundary conditions.

We will define next the outgoing DN map. Given g 2 C 1
0
..0;1/ � @˝/, let w solve the exterior mixed problem

with c D 1:

(43)

8̂̂<̂
:̂
.@2

t ��/v D 0 in .0;T / � Rn n N̋ ;

vjŒ0;T ��@˝ D g;

vjtD0 D 0;

@tvjtD0 D 0:

Then we set

Ng D
@w

@�

ˇ̌̌
Œ0;T ��@˝

:

By [9], for g 2 H 1
.0/
.Œ0;T � � @˝/, we have Œw;wt � 2 C.Œ0;T /I H.˝//; therefore,

N W H 1
.0/.Œ0;T � � @˝/ ! C.Œ0;T � � H

1
2 .@˝//

is continuous, where the subscript .0/ indicates the closed subspace of functions vanishing at t D 0. Note that the
results in [9] require the domain to be bounded but by finite domain of dependence we can remove that restriction in
our case. We also refer to [3, Proposition 2] for a sharp domain of dependence result for exterior problems.

When F and a are given by (3), the next lemma follows directly from its version [16, sec. 7] for �f by subtracting
Q�f and �f .

Lemma 3.1. Let w solve (2) with F supported in N̋ , and let t 7! a.t; �/F.�/ 2 L2.˝/ be continuous. Assume that
c D 1 outside ˝. Then for any T > 0, wjŒ0;T ��@˝ determines uniquely the normal derivative of w on Œ0;T � � @˝ as
follows:

(44)
@w

@�

ˇ̌̌
Œ0;T ��@˝

D N
�
wjŒ0;T ��@˝

�
:

Proof. Let v be the solution of (43) with g D wjŒ0;T ��@˝ . The latter is in H 1
.0/
.Œ0;T � � @˝/. Let w be the solution of

(2). Then v � w solves the unit speed wave equation in Œ0;T � � Rn n˝ with zero Dirichlet data and zero initial data.
Therefore, v D w in Œ0;T � � Rn n˝. �

With this in mind, we have the following version of Theorem 2.2 in this context. Notice that in the two theorems
below, we do not assume F and a to be given by (3).

Theorem 3.1. Assume that @˝ is strictly convex, w solves (2) and the function a satisfies the elliptic condition (13)
in the closure of the set (45) below. Let a and w admit even extensions satisfying (10). Let T > 0 be such that
xn WD dist.x; @˝/ is a well defined smooth function in ˝ with non-zero differential; and fxn D sg, 0 � s < T are
strictly convex surfaces. Then if w D 0 on Œ0;T � � @˝, we also have

(45) F.x/ D 0 for x 2 ˝, dist.x; @˝/ < T :

Proof. We first apply Lemma 3.1 to conclude that the normal derivative of w vanishes on Œ0;T � � @˝, as well.
The assumptions of the theorem imply that a.t;x/ can be extended in an even way satisfying the assumptions of
Theorem 2.2. Then w admits an even extension, as a solution of the wave equation, and thus we apply Theorem 2.2.

�

Since recovery of F in (2) from wjŒ0;T ��@˝ is a linear problem, we also get uniqueness for that problem in the set
(45). We also get unique recovery of the speed c in the region in (45). Those are in fact partial cases of Theorem 3.2
and Theorem 3.3 below.



RECOVERY OF A SOURCE OR A SPEED 13

The local data result, in the spirit of Theorem 2.3, is not so straightforward because the recovery of the Neumann
data is not so direct.

Define the “cone”

(46) COt ; Ox WD f.t;x/ 2 RC � @˝I t C dist0.x; Ox/ � Otg;

where for a, b in Rn n˝, dist0.a; b/ is the infimum of the lengths of all smooth curves lying in Rn n˝ that connect a

and b.

Theorem 3.2. Let ˝, ˝1, G and ˙s be as in Theorem 2.3. Let w solve (2) and let a, w have even extensions that
satisfy (10) and (13) with K being the closure of the set in (47) below. Assume that w D 0 on G. Then

(47) F D 0 in fx 2 ˝ \ .[s˙s/I 9y 2 �; Cdist.x;y/;y � Gg:

Proof. Outside ˝, w solves the wave equation Pw D 0 with zero Cauchy data for t D 0 and zero Dirichlet data on
G, see (28). This does not allow us immediately to conclude that the Neumann data vanishes there, too. On the other
hand, by the finite domain of dependence result in [3], @w=@� D 0 near .t;y/ 2 G, if the “cone” Ct;y is contained in
G. By Theorem 2.3, this implies w.x/ D 0 in a neighborhood of all x in the union of all ˙s so that dist.x;y/ � t .
This completes the proof. �

Remark 3.1. In case of observations on the whole boundary, i.e., when � D @˝, with G D Œ0;T �� @˝, (47) implies
F D 0 in the set dist.x; @˝/ � T . In particular,

(48) T > dist.˝; @˝/

is sufficient to conclude F D 0, see also (33). This in agreement with the results of the previous section since one can
recover the Neumann data easily by Lemma 3.1.

Example 5. Let g be Euclidean and let ˝ be strictly convex. Let � D fxn > ag \ @˝ with some fixed a, and let
˝a D fxn > ag \ ˝. Then ˝a satisfies the foliation condition. For any x 2 ˝0, let y be the point on � with the
same x0 coordinates, where x0 D .x1; : : : ;xn�1/. Then jx � yj < dist0.y; @˝ n� / because even when x 2 fxn D ag

(then jx � yj D yn � a is maximized), the Euclidean distance from y to fxn D ag minimizes the distance from y

to that plane with the constraint that we take it outside ˝. Then the “cone” Cjx�yj;y is included in G, if we choose
G D Œ0;T �� � with T D dist.�; @˝ n � /, see (27). With that choice of G, under the assumptions of the theorem, we
get F D 0 in˝a. In other words, the “cone condition” in (47) is satisfied and therefore it is not restrictive in this case.

By a perturbation argument, if g is close enough to the Euclidean metric, then F would vanish in a bit smaller set
than ˝0.

3.3. Uniqueness for the non-linear problem. We now go back to the problem of determining the sound speed c in
(1) from �f with f fixed and known. Clearly, some conditions on f are needed since when f D 0, for example, we
get no information about c.

Based on Theorem 3.1 or Theorem 3.2, we can easily formulate versions for the non-linear problem. We will
formulate a consequence of the latter theorem under conditions that guarantee that we can recover c in the whole ˝.

Theorem 3.3. Let c and Qc be two smooth positive speeds equal to 1 outside ˝. Let ˙s be as in Theorem 2.3 and
satisfy (a) and (b) there with F WD Qc2 � c2 and with the strictly convexity assumption in (b) fulfilled w.r.t. the speed c.
Let

(49) Q�f D �f on Œ0;T � � @˝, with T satisfying (32):

Assume that for some compact K � N̋ ,

(50) supp. Qc � c/ � K; �f 6D 0 on K:

Then Qc D c in [˙s .
If in particular [˙s is dense in N̋ , and T > dist.˝; @˝/, then Qc D c.

Examples of the latter statement include geodesic balls with a fixed center under the assumption that they are all
strictly convex. Then Qc D c everywhere except in the center, and by continuity, this is true in the center as well.
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Proof. Set w D Qu � u, where Qu and u solve (1) with the speeds Qc and c, respectively; and the same f . Then w solves
(2) with a and F as in (3). The condition (13) is then equivalent to � QujtD0 6D 0. By (1), this is equivalent to �f 6D 0.
Then an application of Theorem 3.2 completes the proof. �

Remark 3.2. The condition �f 6D 0 may look mysterious at first glance. The stability analysis below shows that it
is needed for the linearization to be Fredholm. A simplified look at this condition is the following. Let us remove the
need for c to be 1 outside ˝. Then any harmonic function f is also a time independent solution u D f of the wave
equation .@2

t � c2.x/�/u D 0, regardless of c. Then �f carries no information about c at all. If f is harmonic only
on some open set U , then u D f (regardless of the speed) in the light cone with base U , and then a D 0 there, see (3).
Then the kernel of the linearized map would be C 1 for y 2 U , as it follows from (53). That implies high instability
for the linearization, at least.

3.4. Stability. As a general principle, we have stability in Sobolev spaces if we can detect all singularities at G where
we make measurements, see, e.g., [13]. Under the assumptions of Theorem 3.3, that would require the following

(51) 8.x; �/ 2 SK, the geodesic through .x; �/ hits @˝ for some t with jt j < T :

Here we used the fact that the problem extends in an even way w.r.t. t . We also identify vectors and covectors by the
metric g.

Notice that condition (51) is stronger than the uniqueness condition (48). The latter requires that from any x there
is a signal (a unit speed curve) originating from x reaching @˝ up to time T , i.e., dist.x; @˝/ < T . Condition (51)
requires that from any x and any direction � the geodesic through it reaches @˝ for time jt j < T . The same conditions
appear in the analysis of the thermoacoustic problem of recovery of f , given c and �f , see [15, 11]. Here however,
we assume the foliation condition as well.

Let Rw be the trace of the first component w of w WD Œw;wt �, defined on Œ0;T � �˝, to Œ0;T � � @˝.

Theorem 3.4. Let w solve (2) with w, a satisfying the regularity assumptions of Theorem 3.1 , and let F be supported
in a compact K � ˝, with F 2 L2.K/, and let a.0; �/jK 6D 0. Let ˙s be as in Theorem 2.3 , and assume that [˙s is
dense in ˝ (the foliation condition). Let K and T satisfy (51) (the stability condition). Then

(52) kFkL2.K / � C kwt t kL2.Œ0;T ��@˝/

with a constant C that remains uniform when the coefficient a stays in a fixed bounded set in C 2.Œ0;T �I C. N̋ //.

Proof. We use the notation a.t/ D a.t; �/ below. Differentiate

(53) w D

Z t

0

U.s/ Œ0; a.t � s/F � ds

to get

@t Rw D RU.t/Œ0; a.0/F �C R

Z t

0

U.s/Œ0; a0.t � s/F � ds:

Differentiate again and use the identity a0.0/ D 0 and the definition of � to get

(54) @2
t Rw D �a.0/F C R

Z t

0

U.s/Œ0; a00.t � s/F � ds D �a.0/F C R

Z t

0

U.t � s/Œ0; a00.s/F � ds:

Let � 2 C 1.Œ0;T �/ be such that � D 0 near T , and � D 1 on Œ0;T0�, where T0 < T is such that (48) still holds with
T replaced by T0. Let B be the back-projection operator defined as follows. Let v solve8<: .@2

t � c2�/v D 0 in .0;T / �˝;

vjtDT D @tvjtDT D 0;

vjŒ0;T ��@˝ D h:

Then Bh WD vjtD0. By [15, Theorem 3], B�� is a classical 	DO of order 0 with principal symbol
1

2
�.x;�.�C.x; �///C

1

2
�.x;�.��.x; �///;

where x;� is the unit speed geodesic issued from .x; �/, and ˙�˙ � 0 are the times need for it to hit @˝. We recall
that we identify vectors and covectors by the metric g. Condition (51) guarantees that the symbol above is elliptic.
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Let Q be a parametric for it, i.e., QB�� D Id C K0 in ˝, with K smoothing. For the purpose of this proof, we only
need K0 2 	�1, that can be achieved with finite smoothness requirements on c.

Apply QB� to (54) to get

(55) QB�@2
t Rw D .Id C K0/a.0/F C QB�

Z t

0

RU.t � s/Œ0; a00.s/F � ds:

For any s 2 Œ0; t �, the function Œ0; a00.s/F � belongs to the energy space H and is supported in ˝. Then RU.t � s/ (a
more accurate notation would be RU.� � s/) maps that function to a function that belongs to H 1

.0/
.R � @˝/, where the

subscript .0/ indicates a support disconnected from t D 0. This is explained in [15] in the context of thermoacoustic
tomography, and the reason is that RU.� � s/ is an FIO of order 0 with a canonical relation of graph type, see also
[17]. The dependence on s is continuous, therefore, the integral in (54) belongs to that space, as well. By [9],
B W H 1

.0/
.R � @˝/ ! HD.˝/ and is continuous. Therefore, the integral term in (54) is a compact operator of F in

L2.˝/, mapping L2.˝/ into HD.˝/.
Therefore, since a.0/jK 6D 0,

(56) kFkL2.K / � C k@2
t RwkL2.Œ0;T ��@˝/ C C kK2FkL2.˝/;

with K2 W L2.K/ ! L2.˝/ compact. We used here the fact that B W L2
comp.R � @˝/ ! L2.˝/ that also follows

from [9]; or from the property of B to be an FIO of order 0 with a canonical relation of graph type [15]. By [20,
Proposition 5.3.1], estimate (56) implies a similar one, with a different C , and the last term missing.

The statement about the uniformity of C does not follow directly from the last argument above because there is no
control over C . Instead, we will perturb estimate (52). Notice first that by (54), the map C 2.Œ0;T �I C. N̋ // 3 a 7!

wt t jŒ0;T ��@˝ 2 L2 is continuous. Then if a and Qa are two coefficients and w, Qw are the corresponding solutions, we
have

kFkL2.K / �C kwt t kL2.Œ0;T ��@˝/

�C k Qwt t kL2.Œ0;T ��@˝/ C C k Qwt t � wt t kL2.Œ0;T ��@˝/

�C k Qwt t kL2.Œ0;T ��@˝/ C CıkFkL2.K /;

where ı � 1 when Qa is close enough to a in C 2.Œ0;T �I C. N̋ //. We can therefore absorb the ı term with the l.h.s. �

We are ready now to formulate the stability result for the thermoacoustic problem.

Theorem 3.5. Let K � ˝ be a compact set. Let c, Qc 2 C k , f 2 H kC1, k > n=2, be as in Theorem 3.3 and let the
assumptions of that theorem be satisfied, except for (49). Then

(57) kQc � ckL2.K / � C k@2
t ı�f kL2.Œ0;T ��@˝/;

with C D C.C1/ uniform if Qc satisfies kQckC k � C1, 1=C1 � Qc, k > n=2.

Proof. Apply Theorem 3.4 with a and F as in (3). We only need to prove the statement about the uniformity of C .
That requires to estimate k QukC 2.Œ0;T ��@˝/ in terms of Qc, see (3) and Theorem 3.4.

It is straightforward to see that if c 2 C k�1, then Akf 2 H provided that f 2 H kC1 � H k . Then AkU.t/f is
locally in H kC1 � H k , therefore the first component of U.t/f is C kC1�n=2 provided that k C 1 � n=2 > 0. We have
k C 1 � n=2 � 2 when k � 1 � n=2. Therefore, Qu 2 C.Œ0;T �I C 2/ when k > n=2. The analysis of the rest of the
second derivatives of u is similar. �
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