Jyväskylä Summer School

Multiwave Imaging

GUNTHER UHLMANN

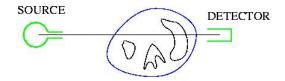
University of Washington & University of Helsinki

Jyväskylä, Finland, August 19-23, 2013

Inverse Boundary Problems

Can one determine the internal properties of a medium by making measurements outside the medium (non-invasive)?

X-ray tomography (CAT-scans)



<ロト <回ト < 注ト < 注ト = 注

Problem: Can we recover the density from attenuation of X-rays?

X-ray Tomography

Radon solved the problem in 1917 Determine the integral of density over lines

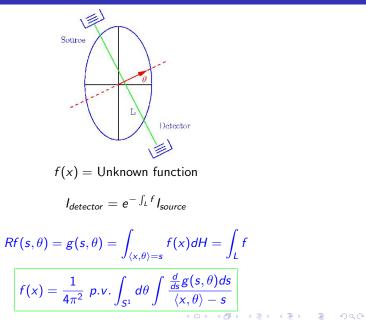
Johann Radon

Nobel Prize in Medicine (1979)

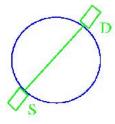
A. Cormack

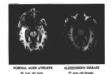
G. Hounfield

Radon (1917) *n* = 2



LINEAR (No Scattering)





X-ray tomography (CT)

PET

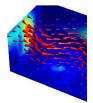
MRI

1. 60 mb/ 10

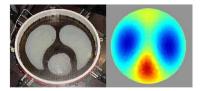
≣ ઝરભ

NONLINEAR (Scattering)

Ultrasound



Electrical Impedance Tomography (EIT)



<ロ> (四)、(四)、(日)、(日)、

臣

Multi-Modality Imaging

Superposition of 2 images each obtained with a single wave

One single wave is sensitive only to a given Contrast :

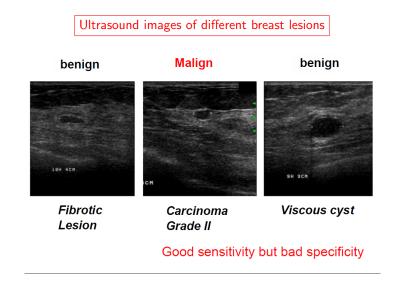
. . .

Ultrasound to bulk compressibility , Optical wave to dielectric permitivity and optical absorption, Sonic Shear wave to shear modulus, viscosity LF Electromagnetic wave to electrical impedance, conductivity X ray to density Gamma ray to radio tracer distribution

Spatial Resolution depends on wave physics laws and on sensor technology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

A difficult problem for radiologists: breast cancer detection



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

How to play Multiwave Imaging ?

Three potential Interactions between different waves

• The interaction of the first wave with tissues *Can generate*, a second kind of wave

PhotoAcoustic Imaging ThermoAcoustic Imaging

• The first wave IS TAGGED locally by a second kind of wave

AcoustoOptical Imaging Electrical Impedance Imaging with Ultrasound

イロト イポト イヨト イヨト

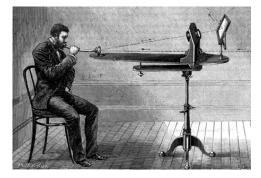
• A first wave travelling much faster than the second one can be used to produce *a* movie of the slow wave propagation

> Transient Elastography Shear Wave imaging (Supersonic mode)

A unique case that allows the observation of the near field of the slow wave inside the body ,

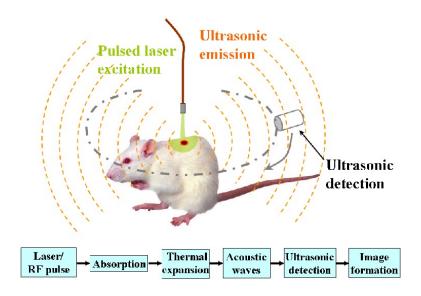
Photoacoustic Tomography

Photoacoustic Effect: The sound of light



Picture from Economist (The sound of light) **Graham Bell**: When rapid pulses of light are incident on a sample of matter they can be absorbed and the resulting energy will then be radiated as heat. This heat causes detectable sound waves due to pressure variation in the surrounding medium.

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで



Wikipedia

(Loading Melanoma3DMovie.avi)

Lihong Wang (Washington U.)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Mathematical Model

First Step : in PAT and TAT is to reconstruct H(x) from $u(x, t)|_{\partial\Omega\times(0,T)}$, where u solves

$$(\partial_t^2 - c^2(x)\Delta)u = 0$$
 on $\mathbb{R}^n \times \mathbb{R}^+$
 $u|_{t=0} = \beta H(x)$
 $\partial_t u|_{t=0} = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Second Step : in PAT and TAT is to reconstruct the optical or electrical properties from H(x) (internal measurements).

First Step:

IP for Wave Equation

c(x) > 0: acoustic speed

$$\begin{cases} (\partial_t^2 - c^2 \Delta)u &= 0 \quad \text{in } (0, T) \times \mathbb{R}^n, \\ u|_{t=0} &= f, \\ \partial_t u|_{t=0} &= 0. \end{cases}$$

f : supported in $\overline{\Omega}$. Measurements :

 $\Lambda f := u|_{[0,T] imes \partial \Omega}$.

The problem is to reconstruct the unknown f from Λf .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

Prior results

Constant Speed

KRUGER; AGRANOVSKY, AMBARTSOUMIAN, FINCH, GEORGIEVA-HRISTOVA, JIN, HALTMEIER, KUCHMENT, NGUYEN, PATCH, QUINTO, RAKESH, WANG, XU ...

Variable Speed (Numerical Results)

ANASTASIO ET. AL., BURGHOLZER, COX ET. AL., GEORGIEVA-HRISTOVA, GRUN, HALTMEIR, HOFER, KUCHMENT, NGUYEN, PALTAUFF, WANG, XU... (Time reversal)

Partial Data

Problem is uniqueness, stability and reconstruction with measurements on a part of the boundary. There were no results so far for the variable coefficient case, and there is a uniqueness result in the constant coefficients one by FINCH, PATCH AND RAKESH (2004).

Ω =ball, constant speed

c = 1, Ω : unit ball, n = 3. Explicit Reconstruction Formulas (FINCH, HALTMEIER, KUNYANSKY, NGUYEN, PATCH, RAKESH, XU, WANG).

$$g(x,t) = \Lambda f$$
, $x \in S^{n-1}$. In 3D,

$$f(x) = -\frac{1}{8\pi^2}\Delta_x \int_{|y|=1} \frac{g(y,|x-y|)}{|x-y|} \mathrm{d}S_y.$$

$$f(x) = -\frac{1}{8\pi^2} \int_{|y|=1} \left(\frac{1}{t} \frac{d^2}{dt^2} g(y, t) \right) \bigg|_{t=|y-x|} \mathrm{d}S_y.$$

$$f(x) = \frac{1}{8\pi^2} \nabla_x \cdot \int_{|y|=1} \left(\nu(y) \frac{1}{t} \frac{d}{dt} \frac{g(y,t)}{t} \right) \bigg|_{t=|y-x|} \mathrm{d}S_y.$$

The latter is a partial case of an explicit formula in any dimension (KUNYANSKY).

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $T = \infty$: a backward Cauchy problem with zero initial data. $T < \infty$: time reversal

$$\begin{cases} (\partial_t^2 - c^2 \Delta) v_0 &= 0 \quad \text{in } (0, T) \times \Omega, \\ v_0|_{[0,T] \times \partial \Omega} &= \chi h, \\ v_0|_{t=T} &= 0, \\ \partial_t v_0|_{t=T} &= 0, \end{cases}$$

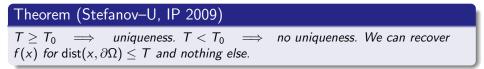
where
$$h = \Lambda f$$
; χ : cuts off smoothly near $t = T$.

Time Reversal

$$f \approx A_0 h := v_0(0, \cdot)$$
 in $\overline{\Omega}$, where $h = \Lambda f$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Underlying metric:
$$c^{-2}dx^2$$
. Set
$$T_0 = \max_{x \in \overline{\Omega}} dist(x, \partial \Omega).$$



▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

The proof is based on the unique continuation theorem by Tataru.

Stability

 $T_1 \leq \infty$: length of the longest (maximal) geodesic through $\overline{\Omega}$.

The "stability time" : $T_1/2$. If $T_1 = \infty$, we say that the speed is trapping in Ω .

Theorem (Stefanov–U)

$T > T_{1}/2$	\implies	stability.
---------------	------------	------------

 $T < T_1/2 \implies$ no stability, in any Sobolev norms.

The second part follows from the fact that Λ is a smoothing FIO on an open conic subset of $T^*\Omega$. In particular, if the speed is trapping, there is no stability, whatever T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Reconstruction. Modified time reversal

A modified time reversal, harmonic extension

Given h (that eventually will be replaced by Λf), solve

$$\begin{cases} (\partial_t^2 - c^2 \Delta) v = 0 & \text{in } (0, T) \times \Omega, \\ v|_{[0,T] \times \partial \Omega} = h, \\ v|_{t=T} = \phi, \\ \partial_t v|_{t=T} = 0, \end{cases}$$

where ϕ is the harmonic extension of $h(T, \cdot)$:

 $\Delta \phi = 0, \quad \phi|_{\partial\Omega} = h(T, \cdot).$

Note that the initial data at t = T satisfies compatibility conditions of first order (no jump at $\{T\} \times \partial \Omega$). Then we define the following pseudo-inverse

$$Ah := v(0, \cdot)$$
 in $\overline{\Omega}$.

We are missing the Cauchy data at t = T; the only thing we know there is its value on $\partial\Omega$. The time reversal methods just replace it by zero. We replace it by that data (namely, by $(\phi, 0)$), having the same trace on the boundary, that minimizes the energy.

Given $U \subset \mathbb{R}^n$, the energy in U is given by

$$E_U(t,u) = \int_U (|\nabla u|^2 + c^{-2}|u_t|^2) \,\mathrm{d}x.$$

We define the space $H_D(U)$ to be the completion of $C_0^{\infty}(U)$ under the Dirichlet norm

$$\|f\|_{H_D}^2 = \int_U |\nabla u|^2 \,\mathrm{d}x.$$

The norms in $H_D(\Omega)$ and $H^1(\Omega)$ are equivalent, so

 $H_D(\Omega) \cong H_0^1(\Omega).$

The energy norm of a pair [f, g] is given by

$$\|[f,g]\|_{\mathcal{H}(\Omega)}^2 = \|f\|_{\mathcal{H}_D(\Omega)}^2 + \|g\|_{L^2(\Omega,c^{-2}\mathrm{d}x)}^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

$$A\Lambda f = f - Kf$$

Kf = w(0, .)

where w solves

$$\begin{cases} \left(\begin{array}{l} \left(\partial_t^2 - c^2 \left(x \right) \Delta \right) w = 0 \\ w \mid_{[0,T] \times \partial \Omega} = 0, \\ w \mid_{t=T} = u \mid_{t=T} - \phi, \\ w_t \mid_{t=T} = u_t \mid_{t=T}, \end{array} \right) \end{cases} \text{ in } (0, T) \times \Omega,$$

where u solves

$$\begin{cases} (\partial_t^2 - c^2 \Delta) u = 0 & \text{in } (0, T) \times \mathbb{R}^n, \\ u|_{t=0} = f, \\ \partial_t u|_{t=0} = 0. \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$A\Lambda f = f - Kf$

Consider the "error operator" K,

Kf = first component of: $U_{\Omega,D}(-T)\Pi_{\Omega}U_{\mathbb{R}^n}(T)[f,0]$,

where

- $U_{\mathbb{R}^n}(t)$ is the dynamics in the whole \mathbb{R}^n ,
- $U_{\Omega,D}(t)$ is the dynamics in Ω with Dirichlet BC,
- $\Pi_{\Omega} : \mathcal{H}(\mathbb{R}^n) \to \mathcal{H}(\Omega)$ is the orthogonal projection.

That projection is given by $\Pi_{\Omega}[f,g] = [f|_{\Omega} - \phi, g|_{\Omega}]$, where ϕ is the harmonic extension of $f|_{\partial\Omega}$. Obviously,

 $\|Kf\|_{H_D} \leq \|f\|_{H_D}.$

(日) (四) (문) (문) (문) (문)

Reconstruction (whole boundary)

Theorem (Stefanov–U, IP 2009)

Let $T > T_1/2$. Then $A\Lambda = I - K$, where $||K||_{\mathcal{L}(H_D(\Omega))} < 1$. In particular, I - K is invertible on $H_D(\Omega)$, and the inverse thermoacoustic problem has an explicit solution of the form

$$f=\sum_{m=0}^{\infty}K^{m}Ah,\quad h:=\Lambda f.$$

<ロト <四ト <注入 <注下 <注下 <

If $T > T_1$, then K is compact.

Reconstruction (whole boundary)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

We have the following estimate on ||K||:

Theorem (Stefanov–U, IP 2009) $\|Kf\|_{H_{D}(\Omega)} \leq \left(\frac{E_{\Omega}(u,T)}{E_{\Omega}(u,0)}\right)^{\frac{1}{2}} \|f\|_{H_{D}(\Omega)}, \quad \forall f \in H_{D(\Omega)}, \ f \neq 0,$

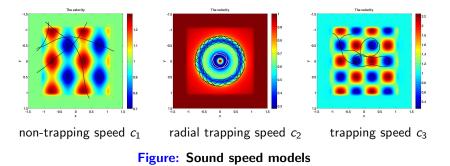
where u is the solution with Cauchy data (f, 0).

Summary: Dependence on T

- (i) T < T₀ ⇒ no uniqueness Af does not recover uniquely f. ||K|| = 1.
 (ii) T₀ < T < T₁/2 ⇒ uniqueness, no stability We have uniqueness but not stability (there are invisible singularities). We do not know if the Neumann series converges. ||Kf|| < ||f|| but ||K|| = 1.
 (iii) T₁/2 < T < T₁ ⇒ stability and explicit reconstruction This assumes that c is non-trapping. The Neumann series converges exponentially but maybe not as fast as in the next case (K contraction but not compact). There is stability (we detect all singularities but some with 1/2 amplitude). ||K|| < 1
- (iv) $T_1 < T \implies$ stability and explicit reconstruction The Neumann series converges exponentially, K is contraction and compact (all singularities have left $\overline{\Omega}$ by time t = T). There is stability. ||K|| < 1

If c is trapping $(T_1 = \infty)$, then (iii) and (iv) cannot happen.

Numerical Experiments (QIAN-STEFANOV-U-ZHAO, SIAM J. Imaging, 2011) Sound speed models



▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Shepp-Logan phantom: non-trapping $c_1(1)$

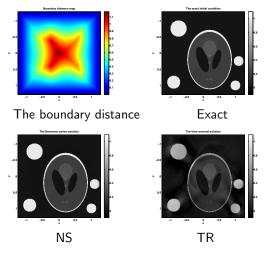


Figure: Example 1, non-trapping c_1 , $T = 2T_0$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

Shepp-Logan phantom: non-trapping c_1 (2)

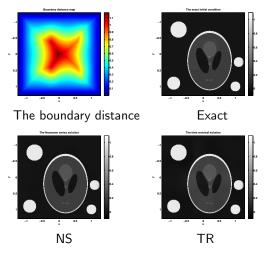


Figure: Example 1, non-trapping c_1 , $T = 4T_0$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

Shepp-Logan phantom: non-trapping c_1 (3)

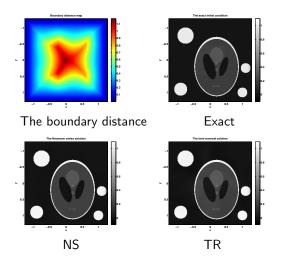


Figure: Example 1, non-trapping c_1 , $T = 4T_0$, with 10% noise.

Shepp-Logan phantom: trapping c_3 (4)

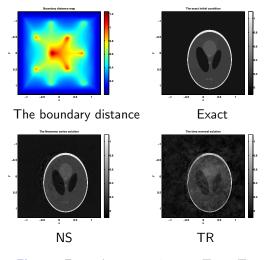


Figure: Example 1, trapping c_3 , $T = 4T_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Zebras: non-trapping c_1 (1)

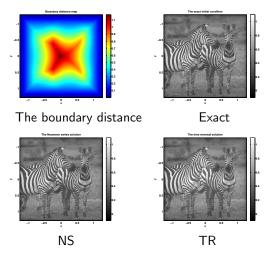


Figure: Example 2, non-trapping c_1 , $T = 4T_0$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへの

Zebras: trapping $\overline{c_3}(2)$

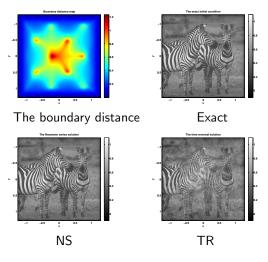


Figure: Example 2, trapping c_3 , $T = 4T_0$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

Zebras: radial trapping c_2 (3)

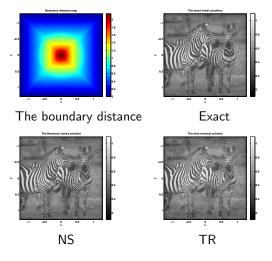
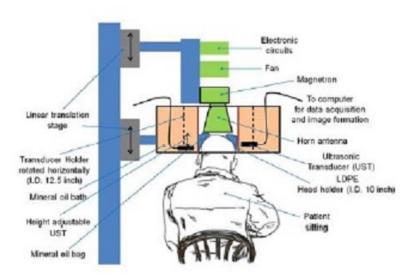


Figure: Example 2, radial trapping c_2 , $T = 4T_0$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

Transcranial PAT brain imaging



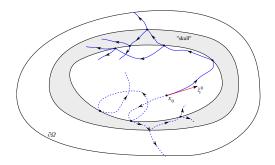
Mark Anastasio-Lihong Wang Problem: effect of skull on PAT () () ()

JAG P

Discontinuous Speeds, Modeling Brain Imaging (Proposed by L. Wang)

Let c be piecewise smooth with a jump across a smooth closed surface Γ . The direct problem is a transmission problem, and there are reflected and refracted rays.

In brain imaging, the interface is the skull. The sound speed jumps by about a factor of 2 there. Experiments show that the ray that arrives first carries about 20% of the energy.



Propagation of singularities in the "skull" geometry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Propagation of singularities is the key again.

(Completely) trapped singularities are a problem, as before. Let $\mathcal{K} \subset \Omega$ be a compact set such that all rays originating from it are never tangent to Γ and non-trapping. For f satisfying

$\operatorname{supp} f \subset \mathcal{K}$

the Neumann series above still converges (uniformly to f).

We need a small modification to keep the support in $\ensuremath{\mathcal{K}}$ all the time. We use the projection

 $\Pi_{\mathcal{K}}:H_D(\Omega)\to H_D(\mathcal{K})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

for that purpose.

Reconstruction

Theorem (Stefanov–U, IP 2011)

Let all rays from ${\cal K}$ have a path never tangent to Γ that reaches $\partial\Omega$ at time |t|< T. Then

 $\Pi_{\mathcal{K}}A\Lambda = I - K$ in $H_D(\mathcal{K})$, with $\|K\|_{H_D(\mathcal{K})} < 1$.

In particular, I - K is invertible on $H_D(\mathcal{K})$, and Λ restricted to $H_D(\mathcal{K})$ has an explicit left inverse of the form

$$f = \sum_{m=0}^{\infty} K^m \Pi_{\mathcal{K}} Ah, \quad h = \Lambda f.$$

The assumption $\operatorname{supp} f \subset \mathcal{K}$ means that we need to know f outside \mathcal{K} ; then we can subtract the known part.

In the numerical experiments below, we do not restrict the support of f, and still get good reconstruction images but the invisible singularities remain invisible.

Numerical experiments

discontinuous sound speed models

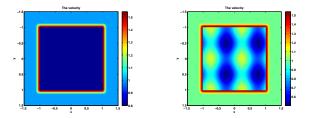


Figure: Left: a discontinuous piecewise sound speed c_4 ; **Right**: a non-piecewise constant discontinuous sound speed c_5 .

Shepp-Logan phantom: discontinuous speed c_4 (1)

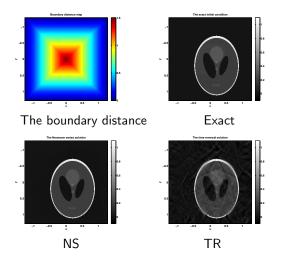


Figure: Example 3, discontinuous sound speed c_4 , $T = 4T_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Shepp-Logan phantom: discontinuous speed c_5 (2)

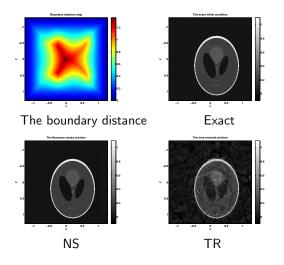


Figure: Example 3, discontinuous sound speed c_5 , $T = 4T_0$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

Zebras: discontinuous speed c₅

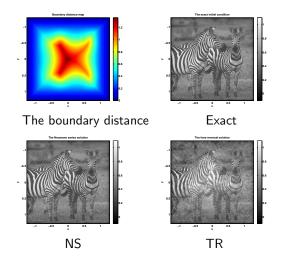
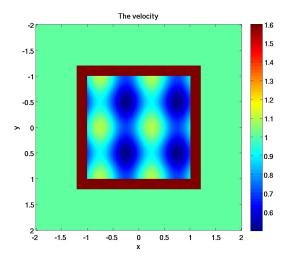


Figure: Example 2, discontinuous sound speed c_5 , $T = 4T_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆

Brain imaging of square headed people

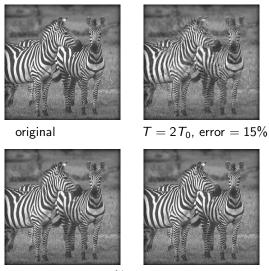


The speed jumps by a factor of 2 in average from the exterior of the "skull". The region Ω , as before, is smaller: $\Omega = [-1.28, 1.28]^2$.

<ロト (四) (三) (三) (三)

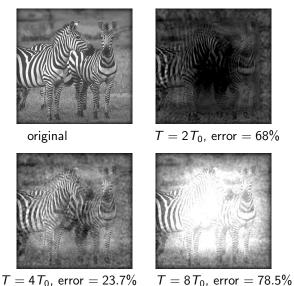
æ

A "skull" speed, Neumann series



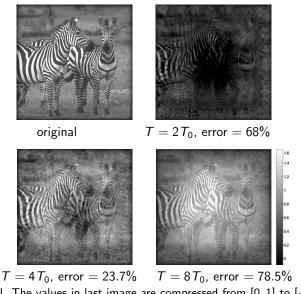
 $T = 4T_0$, error = 9.75% $T = 8T_0$, error = 7.55% Neumann Series, 15 steps

A "skull" speed, Time Reversal



Time Reversal. There is a lot of "white clipping" in the last image, many values in [1, 1.6]

A "skull" speed, Time Reversal



Time Reversal. The values in last image are compressed from [0,1] to [-0.05, 1.6]

Original vs. Neumann Series vs. Time Reversal



original NS, error = 7.55% TR, error = 78.5%

 $T = 8T_0$. Original vs. Neumann Series vs. Time Reversal (the latter compressed from [0, 1] to [-0.05, 1.6])

(日)、

Assume that c = 1 outside Ω . Let $\Gamma \subset \partial \Omega$ be a relatively open subset of $\partial \Omega$. Assume now that the observations are made on $[0, T] \times \Gamma$ only, i.e., we assume we are given

 $\Lambda f|_{[0,T]\times\Gamma}.$

We consider f's with

 $\operatorname{supp} f \subset \mathcal{K},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

where $\mathcal{K} \subset \Omega$ is a fixed compact.

Uniqueness

Heuristic arguments for uniqueness: To recover f from Λf on $[0, T] \times \Gamma$, we must at least be able to get a signal from any point, i.e., we want for any $x \in \mathcal{K}$, at least one "signal" from x to reach some Γ for t < T. Set

 $T_0(\mathcal{K}) = \max_{x \in \mathcal{K}} \operatorname{dist}(x, \Gamma).$

The uniqueness condition then should be

 $T \geq T_0(\mathcal{K}).$

Theorem (Stefanov–U, IP 2011)

Let c = 1 outside Ω , and let $\partial \Omega$ be strictly convex. Then if $T \ge T_0(\mathcal{K})$, if $\Lambda f = 0$ on $[0, T] \times \Gamma$ and $\operatorname{supp} f \subset \mathcal{K}$, then f = 0.

Proof based on Tataru's uniqueness continuation results. Generalizes a similar result for constant speed by Finch, Patch and Rakesh.

As before, without (*), one can recover f on the reachable part of \mathcal{K} . Of course, one cannot recover anything outside it, by finite speed of propagation. Therefore,

(*) is an "if and only if" condition for uniqueness with partial data.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

(*)

Stability

Heuristic arguments for stability: To be able to recover f from Λf on $[0, T] \times \Gamma$ in a stable way, we need to recover all singularities. In other words, we should require that

 $\forall (x,\xi) \in \mathcal{K} \times S^{n-1}$, the ray (geodesic) through it reaches Γ at time |t| < T.

We show next that this is an "if and only if" condition (up to replacing an open set by a closed one) for stability. Actually, we show a bit more.

Proposition (Stefanov–U)

If the stability condition is not satisfied on $[0, T] \times \overline{\Gamma}$, then there is no stability, in any Sobolev norms.

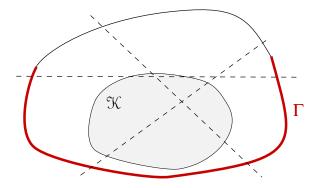
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

A reformulation of the stability condition

• Every geodesic through ${\cal K}$ intersects $\Gamma.$

• $\forall (x,\xi) \in \mathcal{K} \times S^{n-1}$, the travel time along the geodesic through it satisfies |t| < T.

Let us call the least such time $T_1/2$, then $T > T_1/2$ as before. In contrast, any small open Γ suffices for uniqueness.



Let A be the "modified time reversal" operator as before. Actually, ϕ will be 0 because of χ below. Let $\chi \in C_0^{\infty}([0, T] \times \partial \Omega)$ be a cutoff (supported where we have data).

Theorem

 $A\chi\Lambda$ is a zero order classical ΨDO in some neighborhood of ${\cal K}$ with principal symbol

$$\frac{1}{2}\chi(\gamma_{x,\xi}(\tau_{+}(x,\xi))) + \frac{1}{2}\chi(\gamma_{x,\xi}(\tau_{-}(x,\xi))).$$

If $[0, T] \times \Gamma$ satisfies the stability condition, and $|\chi| > 1/C > 0$ there, then (a) $A\chi\Lambda$ is elliptic, (b) $A\chi\Lambda$ is a Fredholm operator on $H_D(\mathcal{K})$, (c) there exists a constant C > 0 so that

 $\|f\|_{H_D(\mathcal{K})} \leq C \|\Lambda f\|_{H^1([0,T]\times\Gamma)}.$

(b) follows by building a parametrix, and (c) follows from (b) and from the uniqueness result.

In particular, we get that for a fixed $T > T_1$, the classical Time Reversal is a parametrix (of infinite order, actually).

One can constructively write the problem in the form

Reducing the problem to a Fredholm one

 $(I - K)f = BA\chi\Lambda f$ with the r.h.s. given,

i.e., B is an explicit operator (a parametrix), where K is compact with 1 not an eigenvalue.

Constructing a parametrix without the Ψ DO calculus.

Assume that the stability condition is satisfied in the interior of $\operatorname{supp} \chi$. Then

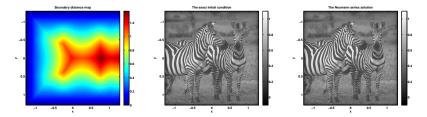
 $A\chi\Lambda f = (I - K)f,$

where I - K is an elliptic Ψ DO with $0 \le \sigma_p(K) < 1$. Apply the formal Neumann series of I - K (in Borel sense) to the l.h.s. to get

 $f = (I + K + K^2 + \dots)A\chi\Lambda f \mod C^{\infty}.$

Numerical Experiments: partial data

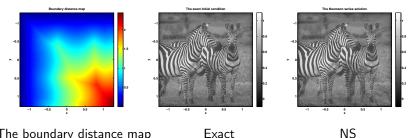
Zebras: non-trapping speed c_1 , one-side missing



The boundary distance map Exact NS **Figure:** non-trapping sound speed c_1 , one-side missing, T = 4.7.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Zebras: non-trapping speed c_1 , two-side missing

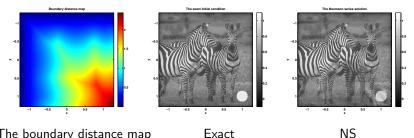


The boundary distance map Exact

Figure: non-trapping sound speed c_1 , two-side missing, T = 4.7.

(日) (日) (日) (日) (日)

Modified zebras: non-trapping speed c_1 , two-side missing

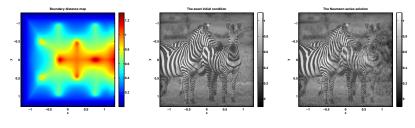


The boundary distance map Exact

Figure: non-trapping sound speed c_1 , two-side missing, T = 4.7.

イロト イヨト イヨト イヨト

Zebras: trapping speed c_3 , one-side missing

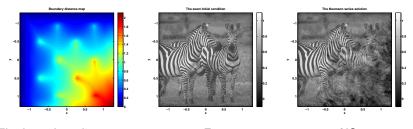


The boundary distance map Exact NS

Figure: trapping sound speed c_3 , one-side missing, T = 4.92.

(日) (日) (日) (日) (日)

Zebras: trapping speed c_3 , two-side missing

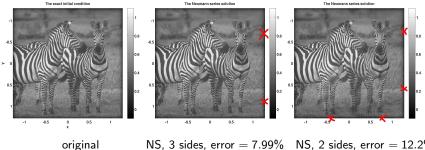


The boundary distance map Exact NS

Figure: trapping sound speed c_3 , two-side missing, T = 4.92.

(日) (日) (日) (日) (日)

Examples: Non-trapping speed, 1 and 2 sides missing

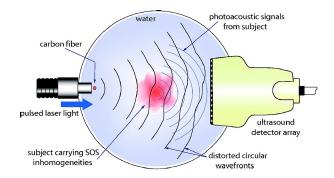


NS, 3 sides, error = 7.99% NS, 2 sides, error = 12.2%

・ロト ・日下・・ キャー・

Partial data reconstruction, non-trapping speed, $T = 4T_0$.

Determining the sound speed (Manohar et al, Appl. Phys. Lett. 2007)



A schematic of the method to measure speed-of-sound cross-sectional images in a photo-acoustic imager. Ultrasound transients are generated in the absorbing carbon fiber placed in the path of light illuminating the sample. The time-of-arrival of the ultrasound transient is measured at each element of the ultrasound detector array. The photo-acoustic signals from the object can be measured as well.

In the diffusive regime, optical radiation is modeled by:

 $-\nabla \cdot \gamma(x)\nabla u + \sigma(x)u = 0$ in X u = g on ∂X Illumination,

 $H(x) = \Gamma(x)\sigma(x)u(x)$ in X Internal Functional.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

The **objectives** of *quantitative PAT* are to understand:

- What we can reconstruct of $(\gamma(x), \sigma(x), \Gamma(x))$ from knowledge of $H_i(x)$,
- $1 \leq j \leq J$ obtained for illuminations $g = g_j$, $1 \leq j \leq J$.
- How stable the reconstructions are.
- How to choose J and the illuminations g_i .

In Thermo-Acoustic Tomography, low-frequency radiation is used.

Using a (scalar) Helmholtz model for radiation, quantitative TAT is

$$\Delta u + n(x)k^2u + ik\sigma(x)u = 0 \text{ in } X, \qquad u = g \text{ on } \partial X \quad \text{Illumination,}$$
$$H(x) = \sigma(x)|u|^2(x) \text{ in } X \qquad \text{Internal Functional.}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

QTAT consists of uniquely and stably reconstructing $\sigma(x)$ from knowledge of H(x) for appropriate illuminations g.

QPAT with two/more measurements

 $-\nabla \cdot \gamma(x)\nabla u + \sigma(x)u = 0 \text{ in } X, \quad u = g \text{ on } \partial X, \quad H(x) = \Gamma(x)\sigma(x)u(x).$

Let (g_1, g_2) providing (H_1, H_2) . Define $\beta = H_1^2 \nabla \frac{H_2}{H_1}$. **IF**: $|\beta| \ge c_0 > 0$, then

Theorem (Bal-U, IP 2010)

(i) (H_1, H_2) uniquely determine the whole measurement operator $g \in H^{\frac{1}{2}}(\partial X) \mapsto \mathcal{H}(g) = H \in H^1(X)$. (ii) The measurement operator \mathcal{H} uniquely determines

$$\chi(x) := rac{\sqrt{\gamma}}{\Gamma\sigma}(x), \qquad q(x) := -\Big(rac{\Delta\sqrt{\gamma}}{\sqrt{\gamma}} + rac{\sigma}{\gamma}\Big)(x).$$

(iii) (χ, q) uniquely determine (H_1, H_2) .

Two well-chosen measurements suffice to reconstruct (χ , q). Three or more measurements give no new information. (Bal-Ren, 2011)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Quantitative PAT

The proof of (i) & (ii) is based on the *elimination* of σ to get

$$-\nabla \cdot \chi^2 \Big[H_1^2 \nabla \frac{H}{H_1} \Big] = 0 \text{ in } X \quad (\chi, H) \text{ known on } \partial X.$$

Then we verify that
$$q:=-\Big(rac{\Delta\sqrt{\gamma}}{\sqrt{\gamma}}+rac{\sigma}{\gamma}\Big)(x)=-rac{\Delta(\chi H_1)}{\chi H_1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

(iii) Finally, define $(\Delta + q)v_j = 0$ to get $H_j = \frac{v_j}{\chi}$. The **IF** implies that vector field $H_1^2 \nabla \frac{u_2}{u_1} \neq 0$. This is a qualitative statement on the absence of critical points of elliptic solutions.

Stability of the reconstruction

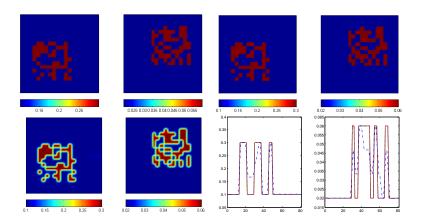
Assuming **IF** satisfied, then the reconstruction of (e.g.) χ is **stable**.

CGO method. Analyzing the transport equation by the method of characteristics and using CGO solutions, we show that for appropriate illuminations (and for $k \ge 3$):

 $\|\chi - \tilde{\chi}\|_{C^{k-1}(X)} \le C \|H - \tilde{H}\|_{(C^k(X))^2}.$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Reconstruction of two discontinuous parameters



▲ロト ▲園ト ▲画ト ▲画ト 三直 - のんで

Stability result for QTAT

$$\Delta u + k^2 u + i\sigma(x)u = 0$$
 in X, $u = g$ on ∂X , $H(x) = \sigma(x)|u|^2$.

Theorem (Bal,Ren,U,Zhou'11)

Let σ and $\tilde{\sigma}$ be uniformly bounded functions in $Y = H^p(X)$ for p > n with X the bounded support of the unknown conductivity.

Then there is an open set of illuminations g such that

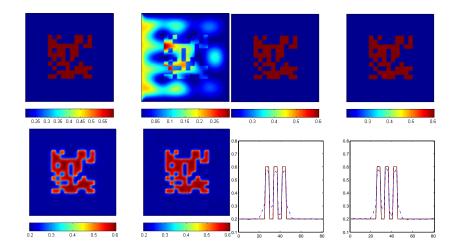
 $H(x) = \tilde{H}(x)$ in Y implies that $\sigma(x) = \tilde{\sigma}(x)$ in Y.

Moreover, there exists C such that $\|\sigma - \tilde{\sigma}\|_{Y} \leq C \|H - \tilde{H}\|_{Y}$.

The **inverse scattering problem with internal data** is **well posed**. We apply a Banach fixed point **IF** appropriate functional is a contraction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Discontinuous conductivity in TAT



◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 吾 ∽��

Vector fields and complex geometrical optics

• Take $\rho \in \mathbb{C}^n$ with $\rho \cdot \rho = 0$. Then $\Delta e^{\rho \cdot x} = 0$. For $u_j = e^{\rho_j \cdot x}$, j = 1, 2:

$$\Im\left(e^{-(\rho_1+\rho_2)\cdot x}u_1^2\nabla\frac{u_2}{u_1}\right)=\Im(\rho_2-\rho_1),$$

is a constant vector field 2k for $\rho_1 = k + ik^{\perp}$ and $\rho_2 = \overline{\rho}_1$.

• Let $u_{\rho}(x) = e^{\rho \cdot x} (1 + \psi_{\rho}(x))$ be a solution of $\Delta u_{\rho} + qu_{\rho} = 0$.

Theorem (Bal-U'10)

. For q sufficiently smooth and $k \ge 0$, we have

 $\|\rho\|\|\psi_\rho\|_{H^{\frac{n}{2}+k+\varepsilon}(X)}+\|\psi_\rho\|_{H^{\frac{n}{2}+k+1+\varepsilon}(X)}\leq C\|q\|_{H^{\frac{n}{2}+k+\varepsilon}(X)}.$

• For illuminations g on ∂X close to traces of CGO solutions constructed in \mathbb{R}^d , we obtain "nice" vector fields $|\beta| \ge c_0 > 0$ and thus an open set of illuminations g for which stable reconstructions are guaranteed.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

The IFs and the CGOs

Several HIPs require to verify qualitative properties of elliptic solutions:

- the absence of critical points in QPAT
- the contraction of appropriate functionals in QTAT

The existence of open sets of **illuminations** g_j such that these properties hold is obtained by means of **CGO** solutions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Consider a general scalar elliptic equation

$$abla \cdot a \nabla u + b \cdot \nabla u + c u = 0$$
 in X , $u = f$ on ∂X

with *a*, *b*, *c*, $\nabla \cdot a$ of class $C^{0,\alpha}(\bar{X})$ for $\alpha > 0$, complex-valued, and $\alpha_0 |\xi|^2 \leq \xi \cdot (\Re a) \xi \leq \alpha_0^{-1} |\xi|^2$. For $\tau > 0$ a function on *X*, define

$$a_{ au} = au a, \quad b_{ au} = au b - a
abla au, \quad c_{ au} = au c$$

and the equivalence class $\mathfrak{c} := (a, b, c) \sim (a_{\tau}, b_{\tau}, c_{\tau}).$

Let $I \in \mathbb{N}^*$ and $f_i \in H^{\frac{1}{2}}(\partial X)$ for $1 \leq i \leq I$ be I boundary conditions. Define $\mathfrak{f} = (f_1, \ldots, f_I)$. The measurement operator $\mathfrak{M}_{\mathfrak{f}}$ is

$$\mathfrak{M}_{\mathfrak{f}}:\mathfrak{c}\mapsto\mathfrak{M}_{\mathfrak{f}}(\mathfrak{c})=(u_1,\ldots,u_l),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

with u_i solution of the above elliptic problem with $f = f_i$.

Unique reconstruction up to gauge transformation

 $abla \cdot a
abla u_j + b \cdot
abla u_j + c u_j = 0 \quad \text{ in } X, \qquad u_j = f_j \quad \text{ on } \partial X, \quad 1 \leq j \leq I.$

Theorem (Bal-U 2012)

. Let \mathfrak{c} and $\mathfrak{\tilde{c}}$ be two classes of coefficients with (a, b, c) and $\nabla \cdot a$ of class $C^{m,\alpha}(\bar{X})$ for $\alpha > 0$ and m = 0 or m = 1. We assume that the above elliptic equation is well posed for $\mathfrak{c} = (a, b, c)$.

Then for I sufficiently large and for an open set of boundary conditions $\mathfrak{f} = (f_j)_{1 \le j \le l}$, then $\mathfrak{M}_{\mathfrak{f}}(\mathfrak{c})$ uniquely determines \mathfrak{c} . Moreover, we have the following stability estimate

 $\begin{array}{rcl} \|(a,b+\nabla\cdot a,c)-(\tilde{a},\tilde{b}+\nabla\cdot\tilde{a},\tilde{c})\|_{W^{m,\infty}(X)} &\leq & C\|\mathfrak{M}_{\mathfrak{f}}(\mathfrak{c})-\mathfrak{M}_{\mathfrak{f}}(\tilde{\mathfrak{c}})\|_{W^{m+2,\infty}(X)},\\ & \|b-\tilde{b}\|_{L^{\infty}(X)} &\leq & C\|\mathfrak{M}_{\mathfrak{f}}(\mathfrak{c})-\mathfrak{M}_{\mathfrak{f}}(\tilde{\mathfrak{c}})\|_{W^{3,\infty}(X)}, \end{array}$

for m = 0, 1 and for an appropriate $(\tilde{a}, \tilde{b}, \tilde{c})$ of $\tilde{\mathfrak{c}}$.

In several settings (typically when CGO solutions are available), we can choose $I = I_n = \frac{1}{2}n(n+3)$ with *n* spatial dimension and with I_n the dimension of c.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

In some situations (such as the practical settings of QPAT and TE/MRE), the gauge in $\mathfrak c$ can be uniquely and stably determined:

Corollary (Bal-U 2012)

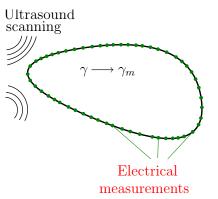
Under the hypotheses of the preceding theorem, and in the setting where b = 0, then $\mathfrak{M}_{\mathfrak{f}}(\mathfrak{c})$ uniquely determines $(\gamma, 0, \mathfrak{c})$. Let us define $\gamma = \tau M^0$ where M^0 has determinant 1. Then we have the following stability result:

 $\|\tau - \tilde{\tau}\|_{W^{1,\infty}(X)} + \|(M^0, c) - (\tilde{M}^0, \tilde{c})\|_{L^{\infty}(X)} \leq C \|\mathfrak{M}_{\mathfrak{f}}(\mathfrak{c}) - \mathfrak{M}_{\mathfrak{f}}(\tilde{\mathfrak{c}})\|_{W^{2,\infty}(X)}.$

From the practical point of view, the reconstruction of the determinant of γ is *more stable* than the reconstruction of the anisotropy of the (possibly complex valued) tensor γ . This has been observed numerically in a different setting.

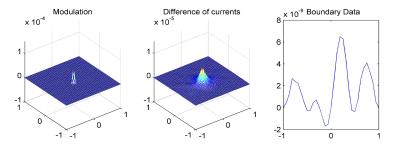
Acousto-Electric Tomography (AET, also called UM-EIT)

- Scanning with ultrasound
- Ultrasound waves change conductivity
- This change is small but can be detected by electrical measurements on the boundary [Zhang,Wang 2004]
- This additional information solves ill-posedness of diffusion equation.



[Ammari, Bonnetier, Capdeboscq, Tanter and Fink 2008], [Kuchment, Kunyansky 2010, 2011], [Capdeboscq, Fehrenbach, de Gournay and Kavian 2009], [Bal 2011], [Bal, Bonnetier, Monard and Triki 2011], [Bal, Monard 2012], [Kocyigit, 2012], ...

Inverse Problem of AET



Conductivity after the ultrasound modulation $m \in C^{\infty}(\Omega)$ is modeled by

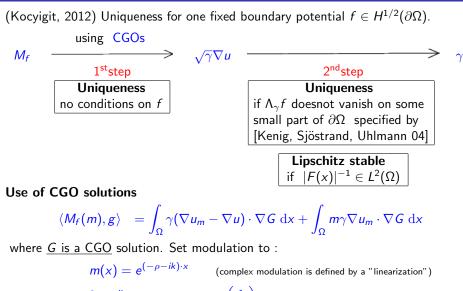
$$\gamma_m(x) = (1 + m(x))\gamma(x)$$

For any fixed potential $f \in H^{1/2}(\partial\Omega)$ boundary measurements are

 $M_f(m) := (\Lambda_{\gamma_m} - \Lambda_{\gamma})f.$

Recover γ from the knowledge of M_f .

AET : Uniqueness



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

 $\implies \text{Recover} \quad \int_{\Omega} e^{-ik \cdot x} \mu \nabla u \cdot \hat{\rho} \, \mathrm{d}x + O\left(\frac{1}{|\rho|}\right)$

AET : Inversion

(Kocyigit, 2012) <u>Stable Inversion</u> (one fixed boundary potential f) 1st step: Recovery of the current density J by an iterative algorithm

$$M_f \longrightarrow J = \gamma \nabla u \longrightarrow \gamma$$

$$1^{\text{st}} \text{step} \qquad 2^{\text{nd}} \text{step (same as above)}$$

Suppose ultrasound modulation m_z is focused about $z \in \Omega$ in $B_{\varepsilon}(z)$

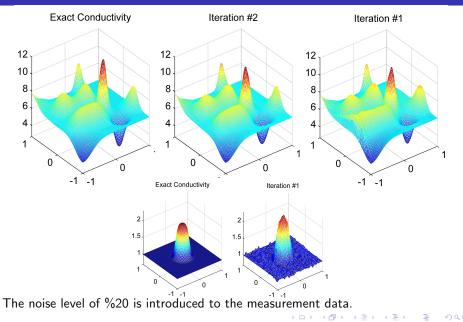
$$\left(\sum_{i=1}^{n} \varepsilon^{-1} \langle M_f(m_z), x_i \rangle e_i\right)_{\text{Known}} = I + R[\gamma] + O(\varepsilon)$$

where R is the matrix valued operator $(R[\gamma])_{j,i} := \langle \Lambda_{\gamma}(r_i|_{\partial\Omega}), x_j \rangle$,

 $\begin{array}{rcl} \Delta w_i &=& -(\nabla m_z)_i, & w_i \mid_{\partial \Omega} = 0 & \text{on } \partial \Omega \\ \nabla \cdot (\gamma \nabla r_i) &=& \nabla \cdot (w_i \gamma^{-1} \nabla \gamma), & \partial_{\nu} r_i = 0 & \text{on } \partial \Omega. \end{array}$

- Algorithm converges when $\gamma^{-1}\nabla\gamma$ is small in $L^2(\Omega)$
- Complexity O(N), N is the mesh size (i.e. locations of ultrasound focus)

AET : Numerical Simulations



Electro-seismic effect

When a porous rock is saturated with an electrolyte, electrical field and seismic waves are coupled through the phenomenon of electro-kinetics. The governing macroscopic models of the electro-seismic effect were derived by Pride(1994),

$$\nabla \times E = i\omega \mu H$$
,

$$\nabla \times H = (\sigma - i\epsilon\omega)E + L(-\nabla p + \omega^2 \rho_f u) + j_s,$$

Maxwell equations

$$-\omega^{2}(\rho u + \rho_{f}w) = \nabla \cdot \tau,$$

$$-i\omega w = \mathbf{L}\mathbf{E} + \frac{\kappa}{\eta}(-\nabla p + \omega^{s}\rho_{f}u),$$

$$\tau = (\lambda \nabla \cdot u + c\nabla \cdot w)\mathbf{I} + G(\nabla u + \nabla u^{T}),$$

$$-p = c\nabla \cdot u + M\nabla \cdot w,$$

Biot's equations

Inverse problem of electro-seismic effect

The inverse problem of the electro-seismic effect consists of two steps.

- The first step is to invert Biot's system and recover the internal coupling term d := LE from boundary measurements. We assume this step is done and mainly focus on the second step.
- By assuming the coupling effect is weak, multiple coupling can be neglected and the coupling system is linearized. The second step of the inverse problem is to invert Maxwell equations

$$\nabla \times E = i\omega\mu H,$$
$$\nabla \times H = (\sigma - i\epsilon\omega)E + j_s$$

and recover the medium conductivity σ and the coupling coefficient L from the boundary measurements and the internal coupling data d = LE from the first step.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Uniqueness result

Theorem (J. Chen and Y. Yang, 2012)

Let Ω be an open, bounded, connected domain in \mathbb{R}^3 with C^k boundary $\partial\Omega$. Assume that (L, σ) and $(\tilde{L}, \tilde{\sigma})$ are two elements in $C^{k+1}(\bar{\Omega}) \times H^{\frac{3}{2}+3+d+\epsilon}(\Omega)$ with $L|_{\partial\Omega} = \tilde{L}|_{\partial\Omega}$. Let $D = (d_j)$ and $\tilde{D} = (\tilde{d}_j)$, $j = 1, \ldots, 4$, be the internal data for coefficients (L, σ) and $(\tilde{L}, \tilde{\sigma})$, respectively, and with boundary conditions $G = (g_j)$, $j = 1, \ldots, 4$.

Then there is a set of illuminations $G \in (C^{k+4}(\partial \Omega))^2$, such that if $D = \tilde{D}$, then $(L, \sigma) = (\tilde{L}, \tilde{\sigma})$ in Ω .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Sketch of the proof

Colton & Päivärinta (1992) constructed CGO solutions to Maxwell equation

 $\nabla \times \nabla \times E - k^2 n E = 0$

of the form

$$E(x) = e^{i\zeta \cdot x}(\eta + R_{\zeta}(x)).$$

Let E_1, E_2 be two solutions to the Maxwell equation. We have that

$$E_2 \cdot \nabla \times \nabla \times E_1 - E_1 \cdot \nabla \times \nabla \times E_2 = 0.$$

By substituting $E_j = d_j/L$, we have a transport equation

 $\beta \cdot \nabla L + \gamma L = 0.$

When the boundary illuminations are chosen to be close to the boundary values of CGO solutions, we can prove that, for a constant ζ_0 ,

 $\|\beta-4L^2\zeta_0\|_{C^k(\Omega)}=O(1/|\zeta|),$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Thus the transport equation admits a unique solution.

Stability result

To consider the stability of the reconstruction, additional geometric information of $\partial\Omega$ is needed.

Hypothesis

let Ω be an open, bounded, connected domain in \mathbb{R}^3 . There exists $R < \infty$ such that for each $y \in \partial \Omega$, we have $\Omega \subseteq B_y(R)$, where $B_y(R)$ is a ball of radius R that is tangent to $\partial \Omega$ at y.

Theorem (J. Chen and Y. Yang, 2012)

let $k \geq 3$. Let Ω satisfies the above hypothesis. Assume that (L, σ) and $(\tilde{L}, \tilde{\sigma})$ are two elements in $C^{k+1}(\bar{\Omega}) \times H^{\frac{3}{2}+3+k+\epsilon}(\Omega)$ with $L|_{\partial\Omega} = \tilde{L}|_{\partial\Omega}$. Let $D = (d_j)$ and $\tilde{D} = (\tilde{d}_j), j = 1, \ldots, 4$, be the internal data for coefficients (L, σ) and $(\tilde{L}, \tilde{\sigma})$, respectively, and with boundary conditions $G = (g_j), j = 1, \ldots, 4$. Then there is a set of illuminations $G \in (C^{k+4}(\partial\Omega))^4$, such that

 $\|L-\tilde{L}\|_{C^{k-1}(\Omega)}+\|\sigma-\tilde{\sigma}\|_{C^{k-2}(\Omega)}\leq C\|D-\tilde{D}\|_{C^{k+1}(\Omega)^4}.$