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Preface

This text is an introduction to Calderón’s inverse conductivity prob-

lem on Riemannian manifolds. This problem arises as a model for elec-

trical imaging in anisotropic media, and it is one of the most basic

inverse problems in a geometric setting. The problem is still largely

open, but we will discuss recent developments based on complex geo-

metrical optics and the geodesic X-ray transform in the case where one

restricts to a fixed conformal class of conductivities.

This work is based on lectures for courses given at the University

of Helsinki in 2010 and at Universidad Autónoma de Madrid in 2011.

It has therefore the feeling of a set of lecture notes for a graduate

course on the topic, together with exercises and also some problems

which are open at the time of writing this. The main focus is on

manifolds of dimension three and higher, where one has to rely on real

variable methods instead of using complex analysis. The text can be

considered as an introduction to geometric inverse problems, but also

as an introduction to the use of real analysis methods in the setting of

Riemannian manifolds.

Chapter 1 is an introduction to the Calderón problem on manifolds,

stating the main questions studied in this text. Chapter 2 reviews ba-

sic facts on smooth and Riemannian manifolds, also discussing the

Laplace-Beltrami operator and geodesics. Limiting Carleman weights,

which turn out to exist on manifolds with a certain product structure,

are treated in Chapter 3. Chapter 4 then proves Carleman estimates

on manifolds with product structure. The proof uses a combination of

the Fourier transform and eigenfunction expansions. Finally, in Chap-

ter 5 we prove a uniqueness result for the inverse problem in certain

geometries, based on inverting the geodesic X-ray transform.
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2 PREFACE

As prerequisites for reading these notes, basic knowledge of real

analysis, Riemannian geometry, and elliptic partial differential equa-

tions would be helpful. Familiarity with [16], [12, Chapters 1-5], and

[5, Chapters 5-6] should be sufficient.

References. For a more thorough discussion on Calderón’s inverse

problem on manifolds and for references to known results, we refer to

the introduction in [4]. General references for Chapter 2 include [11]

for smooth manifolds, [12] for Riemannian manifolds, and [20] for the

Laplace-Beltrami operator. Chapter 3 on limiting Carleman weights

mostly follows [4, Section 2].

To motivate the definition of limiting Carleman weights, we use a

little bit of semiclassical symbol calculus (for differential operators, not

pseudodifferential ones). This is not covered in these notes, but on the

other hand it is only used in Section 3.1 for motivation. See the lecture

notes [6] for details on this topic (semiclassical calculus on manifolds

is covered in an appendix).

The Fourier analysis proof of the Carleman estimates given in Chap-

ter 4 is taken from [10]. Chapter 5, with the proof of the uniqueness

result, follows [4, Sections 5 and 6]. For more details on the geodesic

X-ray transform we refer the reader to [18] and [4, Section 7].

Acknowledgements. I would like to thank the audience in the

courses given in Helsinki and Madrid for useful questions and comments

which have improved the presentation considerably. I would also like

to thank MSRI for a wonderful semester program in inverse problems.



CHAPTER 1

Introduction

To motivate the problems studied in this text, we start with the

classical inverse conductivity problem of Calderón. This problem asks

to determine the interior properties of a medium by making electrical

measurements on its boundary.

In mathematical terms, one considers a bounded open set Ω ⊆ Rn

with smooth (=C∞) boundary, with electrical conductivity given by

the matrix γ(x) = (γjk(x))nj,k=1. We assume that the functions γjk are

smooth in Ω, and for each x the matrix γ(x) is positive definite and

symmetric. If γ(x) = σ(x)I for some scalar function σ we say that the

medium is isotropic, otherwise it is anisotropic. The electrical prop-

erties of anisotropic materials depend on direction. This is common

in many applications such as in medical imaging (for instance cardiac

muscle has a fiber structure and is an anisotropic conductor).

We seek to find the conductivity γ by prescribing different voltages

on ∂Ω and by measuring the resulting current fluxes. If there are

no sources or sinks of current in Ω, a boundary voltage f induces an

electrical potential u which satisfies the conductivity equation

(1.1)

{
div(γ∇u) = 0 in Ω,

u = f on ∂Ω.

Since γ is positive definite this equation is elliptic and has a unique

weak solution for any reasonable f (say in the L2-based Sobolev space

H1/2(∂Ω)). The current flux on the boundary is given by the conormal

derivative (where ν is the outer unit normal vector on ∂Ω)

Λγf := γ∇u · ν|∂Ω.

The last expression is well defined also when γ is a matrix, and a

suitable weak formulation shows that Λγ becomes a bounded map

H1/2(∂Ω)→ H−1/2(∂Ω).

The map Λγ is called the Dirichlet-to-Neumann map, DN map for

short, since it maps the Dirichlet boundary value of a solution to what
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4 1. INTRODUCTION

is essentially the Neumann boundary value. The DN map encodes

the electrical boundary measurements (in the idealized case where we

have infinite precision measurements for all possible data). The inverse

problem is to find information about the conductivity matrix γ from

the knowledge of the map Λγ.

The first important observation is that if γ is anisotropic, the full

conductivity matrix can not be determined from Λγ. This is due to

a transformation law for the conductivity equation under diffeomor-

phisms (that is, bijective maps F such that both F and F−1 are smooth

up to the boundary).

Lemma. If F : Ω→ Ω is a diffeomorphism and if F |∂Ω = Id, then

ΛF∗γ = Λγ.

Here F∗γ is the pushforward of γ, defined by

F∗γ(x̃) =
(DF )γ(DF )t

|det(DF )|

∣∣∣∣
F−1(x̃)

where DF = (∂kFj)
n
j,k=1 is the Jacobian matrix.

Exercise 1.1. Prove the lemma. (Hint: if u solves div(γ∇u) = 0,

show that u◦F−1 solves the analogous equation with conductivity F∗γ.)

The following conjecture for n ≥ 3 is one of the most important

open questions related to the inverse problem of Calderón. It has only

been proved when n = 2.

Question 1.1. (Anisotropic Calderón problem) Let γ1, γ2 be two

smooth positive definite symmetric matrices in Ω. If Λγ1 = Λγ2, show

that γ2 = F∗γ1 for some diffeomorphism F : Ω→ Ω with F |∂Ω = Id.

In fact, the anisotropic Calderón problem is a question of geometric

nature and can be formulated more generally on any Riemannian mani-

fold. To do this, we replace the set Ω ⊆ Rn by a compact n-dimensional

manifold M with smooth boundary ∂M , and the conductivity matrix

γ by a smooth Riemannian metric g on M . On such a Riemannian

manifold (M, g) there is a canonical second order elliptic operator ∆g

called the Laplace-Beltrami operator. In local coordinates

∆gu = |g|−1/2 ∂

∂xj

(
|g|1/2gjk ∂u

∂xk

)
.
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We have written g = (gjk) for the metric in local coordinates, g−1 =

(gjk) for its inverse matrix, and |g| for det(gjk).

The Dirichlet problem for ∆g analogous to (1.1) is

(1.2)

{
∆gu = 0 in M,

u = f on ∂M.

The boundary measurements are given by the DN map

Λgf := ∂νu|∂M
where ∂νu is the Riemannian normal derivative, given in local coordi-

nates by gjk(∂xju)νk where ν is the outer unit normal vector on ∂M .

The inverse problem is to determine information on g from the DN

map Λg.

There is a similar obstruction to uniqueness as for the conductivity

equation, which is given by diffeomorphisms.

Lemma. If F : M → M is a diffeomorphism and if F |∂M = Id,

then

ΛF ∗g = Λg.

Here F ∗g is the pullback of g, defined in local coordinates by

F ∗g(x) = DF (x)tg(F (x))DF (x).

Exercise 1.2. Prove the lemma.

The geometric formulation of the anisotropic Calderón problem is

as follows. We only state the question for n ≥ 3, since again the two

dimensional case is known (also the formulation for n = 2 would look

slightly different since ∆g has an additional conformal invariance then).

Question 1.2. (Anisotropic Calderón problem) Let (M, g1) and

(M, g2) be two compact Riemannian manifolds of dimension n ≥ 3 with

smooth boundary, and assume that Λg1 = Λg2. Show that g2 = F ∗g1 for

some diffeomorphism F : M →M with F |∂M = Id.

A function u satisfying ∆gu = 0 is called a harmonic function in

(M, g). Note that if M is a subset of Rn with Euclidean metric, then

this just gives the usual harmonic functions. Since (u|∂M , ∂νu|∂M) is the

Cauchy data of a function u, and since metrics satisfying g2 = F ∗g1

are isometric in the sense of Riemannian geometry, the anisotropic

Calderón problem reduces to the question: Do the Cauchy data of all

harmonic functions in (M, g) determine the manifold up to isometry?



6 1. INTRODUCTION

Exercise 1.3. Show that a positive answer to Question 1.2 would

imply a positive answer to Question 1.1 when n ≥ 3. (Hint: assume

the boundary determination result that Λγ1 = Λγ2 implies det(γjk1 ) =

det(γjk2 ) on ∂Ω [13].)

Instead of the full anisotropic Calderón problem, we will consider

the simpler problem where the manifolds are assumed to be in the same

conformal class. This means that the metrics g1 and g2 in M satisfy

g2 = cg1 for some smooth positive function c on M . In this problem

there is only one underlying metric g1, and one is looking to determine

a scalar function c. This covers the case of isotropic conductivities in

Euclidean space, but if the metric is not Euclidean the problem still

requires substantial geometric arguments.

The relevant question is as follows. It is known that any diffeomor-

phism F : M → M which satisfies F |∂M = Id and F ∗g1 = cg1 must

be the identity [15], so in this case there is no ambiguity arising from

diffeomorphisms.

Question 1.3. (Anisotropic Calderón problem in a conformal class)

Let (M, g1) and (M, g2) be two compact Riemannian manifolds of di-

mension n ≥ 3 with smooth boundary which are in the same conformal

class. If Λg1 = Λg2, show that g1 = g2.

Exercise 1.4. Using the fact on diffeomorphisms given above,

show that a positive answer to Question 1.2 implies a positive answer

to Question 1.3.

Finally, let us formulate one more question which will imply Ques-

tion 1.3 but which is somewhat easier to study. This last question will

be the one that the rest of these notes is devoted to.

The main point is the observation that the Laplace-Beltrami oper-

ator transforms under conformal scalings of the metric by

∆cgu = c−
n+2
4 (∆g + q)(c

n−2
4 u)

where q = c
n−2
4 ∆cg(c

−n−2
4 ). It can be shown that for any smooth posi-

tive function c with c|∂M = 1 and ∂νc|∂M = 0, one has

Λcg = Λg,−q

where Λg,V : f 7→ ∂νu|∂M is the DN map for the Schrödinger equation

(1.3)

{
(−∆g + V )u = 0 in M,

u = f on ∂M.
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For general V this last Dirichlet problem may not be uniquely solvable,

but for V = −q it is and the DN map is well defined since the Dirichlet

problem for ∆cg is uniquely solvable. We will make the standing as-

sumption that all potentials V are such that (1.3) is uniquely solvable

(this assumption could easily be removed by using Cauchy data sets).

Then the last question is as follows. It is also of independent interest

and a solution would have important consequences for the anisotropic

Calderón problem, inverse problems for Maxwell equations, and inverse

scattering theory.

Question 1.4. Let (M, g) be a compact Riemannian manifold with

smooth boundary, and let V1 and V2 be two smooth functions on M . If

Λg,V1 = Λg,V2, show that V1 = V2.

Exercise 1.5. Prove the above identities for ∆cg and Λcg. Show

that a positive answer to Question 1.4 implies a positive answer to

Question 1.3. (You may assume the boundary determination result

that Λcg = Λg implies c|∂M = 1 and ∂νc|∂M = 0 [13].)





CHAPTER 2

Riemannian geometry

2.1. Smooth manifolds

Manifolds. We recall some basic definitions from the theory of

smooth manifolds. We will consistently also consider manifolds with

boundary.

Definition. A smooth n-dimensional manifold is a second count-

able Hausdorff topological space together with an open cover {Uα} and

homeomorphisms ϕα : Uα → Ũα such that each Ũα is an open set in Rn,

and ϕβ ◦ϕ−1
α : ϕα(Uα ∩Uβ)→ ϕβ(Uα ∩Uβ) is a smooth map whenever

Uα ∩ Uβ is nonempty.

Any family {(Uα, ϕα)} as above is called an atlas. Any atlas gives

rise to a maximal atlas, called a smooth structure, which is not strictly

contained in any other atlas. We assume that we are always dealing

with the maximal atlas. The pairs (Uα, ϕα) are called charts, and the

maps ϕα are called local coordinate systems (one usually writes x = ϕα
and thus identifies points p ∈ Uα with points x(p) ∈ Ũα in Rn).

Definition. A smooth n-dimensional manifold with boundary is

a second countable Hausdorff topological space together with an open

cover {Uα} and homeomorphisms ϕα : Uα → Ũα such that each Ũα is

an open set in Rn
+ := {x ∈ Rn ; xn ≥ 0}, and ϕβ ◦ϕ−1

α : ϕα(Uα∩Uβ)→
ϕβ(Uα ∩ Uβ) is a smooth map whenever Uα ∩ Uβ is nonempty.

Here, if A ⊆ Rn we say that a map F : A → Rn is smooth if

it extends to a smooth map Ã → Rn where Ã is an open set in Rn

containing A.

If M is a manifold with boundary we say that p is a boundary point

if ϕ(p) ∈ ∂Rn
+ for some chart ϕ, and an interior point if ϕ(p) ∈ int(Rn

+)

for some ϕ. We write ∂M for the set of boundary points and M int for

the set of interior points. Since M is not assumed to be embedded in

any larger space, these definitions may differ from the usual ones in

point set topology.

9



10 2. RIEMANNIAN GEOMETRY

Exercise 2.1. If M is a manifold with boundary, show that the

sets M int and ∂M are always disjoint.

To clarify the relations between the definitions, note that a manifold

is always a manifold with boundary (the boundary being empty), but

a manifold with boundary is a manifold iff the boundary is empty (by

the above exercise). However, we will loosely refer to manifolds both

with and without boundary as ’manifolds’.

We have the following classes of manifolds:

• A closed manifold is compact, connected, and has no boundary

– Examples: the sphere Sn, the torus T n = Rn/Zn
• An open manifold has no boundary and no component is com-

pact

– Examples: open subsets of Rn, strict open subsets of a

closed manifold

• A compact manifold with boundary is a manifold with bound-

ary which is compact as a topological space

– Examples: the closures of bounded open sets in Rn with

smooth boundary, the closures of open sets with smooth

boundary in closed manifolds

Smooth maps.

Definition. Let f : M → N be a map between two manifolds.

We say that f is smooth near a point p if ψ ◦ f ◦ϕ−1 : ϕ(U)→ ψ(V ) is

smooth for some charts (U,ϕ) of M and (V, ψ) of N such that p ∈ U
and f(U) ⊆ V . We say that f is smooth in a set A ⊆M if it is smooth

near any point of A. The set of all maps f : M → N which are smooth

in A is denoted by C∞(A,N). If N = R we write C∞(A,N) = C∞(A).

Summation convention. Below and throughout these notes we

will apply the Einstein summation convention: repeated indices in

lower and upper position are summed. For instance, the expression

ajklb
jck

is shorthand for ∑
j,k

ajklb
jck.

The summation indices run typically from 1 to n, where n is the di-

mension of the manifold.
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Tangent bundle.

Definition. Let p ∈ M . A derivation at p is a linear map v :

C∞(M)→ R which satisfies v(fg) = (vf)g(p) +f(p)(vg). The tangent

space TpM is the vector space consisting of all derivations at p. Its

elements are called tangent vectors.

The tangent space TpM is an n-dimensional vector space when

dim(M) = n. If x is a local coordinate system in a neighborhood

U of p, the coordinate vector fields ∂j are defined for any q ∈ U to be

the derivations

∂j|qf :=
∂

∂xj
(f ◦ x−1)(x(q)), j = 1, . . . , n.

Then {∂j|q} is a basis of TqM , and any v ∈ TqM may be written as

v = vj∂j.

The tangent bundle is the disjoint union

TM :=
∨
p∈M

TpM.

The tangent bundle has the structure of a 2n-dimensional manifold

defined as follows. For any chart (U, x) of M we represent elements

of TqM for q ∈ U as v = vj(q)∂j|q, and define a map ϕ̃ : TU →
R2n, ϕ̃(q, v) = (x(q), v1(q), . . . , vn(q)). The charts (TU, ϕ̃) are called

the standard charts of TM and they define a smooth structure on

TM .

Exercise 2.2. Prove that TpM is an n-dimensional vector space

spanned by {∂j} also when M is a manifold with boundary.

Cotangent bundle. The dual space of a vector space V is

V ∗ := {u : V → R ; u linear}.

The dual space of TpM is denoted by T ∗pM and is called the cotangent

space of M at p. Let x be local coordinates in U , and let ∂j be the

coordinate vector fields that span TqM for q ∈ U . We denote by dxj

the elements of the dual basis of T ∗qM , so that any ξ ∈ T ∗qM can be

written as ξ = ξj dx
j. The dual basis is characterized by

dxj(∂k) = δjk.
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The cotangent bundle is the disjoint union

T ∗M =
∨
p∈M

T ∗pM.

This becomes a 2n-dimensional manifold by defining for any chart

(U,ϕ) of M a chart (T ∗U, ϕ̃) of T ∗M by ϕ̃(q, ξj dx
j) = (ϕ(q), ξ1, . . . , ξn).

Tensor bundles. If V is a finite dimensional vector space, the

space of (covariant) k-tensors on V is

T k(V ) := {u : V × . . .× V︸ ︷︷ ︸
k copies

→ R ; u linear in each variable}.

The k-tensor bundle on M is the disjoint union

T kM =
∨
p∈M

T k(TpM).

If x are local coordinates in U and dxj is the basis for T ∗qM , then each

u ∈ T k(TqM) for q ∈ U can be written as

u = uj1···jkdx
j1 ⊗ . . .⊗ dxjk

Here ⊗ is the tensor product

T k(V )× T k′(V )→ T k+k′(V ), (u, u′) 7→ u⊗ u′,

where for v ∈ V k, v′ ∈ V k′ we have

(u⊗ u′)(v, v′) := u(v)u′(v′).

It follows that the elements dxj1 ⊗ . . .⊗ dxjk span T k(TqM). Similarly

as above, T kM has the structure of a smooth manifold (of dimension

n+ nk).

Exterior powers. The space of alternating k-tensors is

Ak(V ) := {u ∈ T k(V ) ; u(v1, . . . , vk) = 0 if vi = vj for some i 6= j}.

This gives rise to the bundle

Λk(M) :=
∨
p∈M

Ak(TpM).

To describe a basis for Ak(TpM), we introduce the wedge product

Ak(V )×Ak′(V )→ Ak+k′(V ), (ω, ω′) 7→ ω∧ω′ := (k + k′)!

k!(k′)!
Alt(ω⊗ω′),
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where Alt : T k(V )→ Ak(V ) is the projection to alternating tensors,

Alt(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgn(σ)T (vσ(1), . . . , vσ(k)).

We have written Sk for the group of permutations of {1, . . . , k}, and

sgn(σ) for the signature of σ ∈ Sk.
If x is a local coordinate system in U , then a basis of Ak(TpM) is

given by

{dxj1 ∧ . . . dxjk}1≤j1<j2<...<jk≤n.

Again, Λk(M) is a smooth manifold (of dimension n+
(
n
k

)
).

Exercise 2.3. Show that Alt maps T k(V ) into Ak(V ) and that

(Alt)2 = Alt.

Smooth sections. The above constructions of the tangent bundle,

cotangent bundle, tensor bundles, and exterior powers are all examples

of vector bundles with base manifold M . We will not need a precise

definition here, but just note that in each case there is a natural vector

space over any point p ∈M (called the fiber over p). A smooth section

of a vector bundle E over M is a smooth map s : M → E such that

for each p ∈ M , s(p) belongs to the fiber over p. The space of smooth

sections of E is denoted by C∞(M,E).

We have the following terminology:

• C∞(M,TM) is the set of vector fields on M ,

• C∞(M,T ∗M) is the set of 1-forms on M ,

• C∞(M,T kM) is the set of k-tensor fields on M ,

• C∞(M,ΛkM) is the set of (differential) k-forms on M .

Let x be local coordinates in a set U , and let ∂j and dxj be the co-

ordinate vector fields and 1-forms in U which span TqM and T ∗qM ,

respectively, for q ∈ U . In these local coordinates,

• a vector field X has the expression X = Xj∂j,

• a 1-form α has expression α = αj dx
j,

• a k-tensor field u can be written as

u = uj1···jkdx
j1 ⊗ . . .⊗ dxjk ,

• a k-form ω has the form

ω = ωI dx
I



14 2. RIEMANNIAN GEOMETRY

where I = (i1, . . . , ik) and dxI = dxi1 ∧ . . . ∧ dxik , with the

sum being over all I such that 1 ≤ i1 < i2 < . . . < ik ≤ n.

Here, the component functions Xj, αj, uj1···jk , ωI are all smooth real

valued functions in U .

Note that a vector field X ∈ C∞(M,TM) gives rise to a linear map

X : C∞(M)→ C∞(M) via Xf(p) = X(p)f .

Example. Some examples of the smooth sections that will be en-

countered in this text are:

• Vector fields: the gradient vector field grad(f) for f ∈ C∞(M),

coordinate vector fields ∂j in a chart U

• One-forms: the exterior derivative df for f ∈ C∞(M)

• 2-tensor fields: Riemannian metrics g, Hessians Hess(f) for

f ∈ C∞(M)

• k-forms: the volume form dV in Riemannian manifold (M, g),

the volume form dS of the boundary ∂M

Changes of coordinates. We consider the transformation law for

k-tensor fields under changes of coordinates, or more generally under

pullbacks by smooth maps. If F : M → N is a smooth map, the

pullback by F is the map F ∗ : C∞(N, T kN)→ C∞(M,T kM),

(F ∗u)p(v1, . . . , vk) = uF (p)(F∗v1, . . . , F∗vk)

where v1, . . . , vk ∈ TpM̃ . Here F∗ : TpM → TF (p)N is the pushforward,

defined by (F∗v)f = v(f ◦ F ) for v ∈ TpM and f ∈ C∞(N). Clearly

F ∗ pulls back k-forms on N to k-forms on M .

The pullback satisfies

• F ∗(fu) = (f ◦ F )F ∗u

• F ∗(u⊗ u′) = F ∗u⊗ F ∗u′
• F ∗(ω ∧ ω′) = F ∗ω ∧ F ∗ω′

In terms of local coordinates, the pullback acts by

• F ∗f = f ◦ F if f is a smooth function (=0-form)

• F ∗(αj dxj) = (αj ◦ F ) d(xj ◦ F ) if α is a 1-form

and it has similar expressions for higher order tensors.

Exterior derivative. The exterior derivative d is a first order dif-

ferential operator mapping differential k-forms to k + 1-forms. It can
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be defined first on 0-forms (that is, smooth functions f) by the local

coordinate expression

df :=
∂f

∂xj
dxj.

In general, if ω = ωI dx
I is a k-form we define

dω := dωI ∧ dxI .

It turns out that this definition is independent of the choice of coordi-

nates, and one obtains a linear map d : C∞(M,Λk) → C∞(M,Λk+1).

It has the properties

• d2 = 0

• d = 0 on n-forms

• d(ω ∧ ω′) = dω ∧ ω′ + (−1)kω ∧ dω′ for a k-form ω, k′-form ω′

• F ∗dω = dF ∗ω

Exercise 2.4. If f is a smooth function and V = (V1, V2, V3) is a

smooth vector field on R3, show that the exterior derivative is related

to the gradient, curl, and divergence by

df = (∇f)j dx
j,

d(Vj dx
j) = (∇× V )j dx

ĵ,

d(Vj dx
ĵ) = (∇ · V ) dx1 ∧ dx2 ∧ dx3,

d(f dx1 ∧ dx2 ∧ dx3) = 0.

Here dx1̂ := dx2 ∧ dx3, dx2̂ := dx3 ∧ dx1, dx3̂ := dx1 ∧ dx2.

Partition of unity. A major reason for including the condition

of second countability in the definition of manifolds is to ensure the

existence of partitions of unity. These make it possible to make con-

structions in local coordinates and then glue them together to obtain

a global construction.

Theorem 2.1. Let M be a manifold and let {Uα} be an open cover.

There exists a family of C∞ functions {χα} on M such that 0 ≤ χα ≤ 1,

supp(χα) ⊆ Uα, any point of M has a neighborhood which intersects

only finitely many of the sets supp(χα), and further∑
α

χα = 1 in M.
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Integration on manifolds. The natural objects that can be inte-

grated on an n-dimensional manifold are the differential n-forms. This

is due to the transformation law for n-forms in Rn under smooth dif-

feomorphisms F in Rn,

F ∗(dx1 ∧ · · · ∧ dxn) = (detDF )dx1 ∧ · · · ∧ dxn.

This is almost the same as the transformation law for integrals in Rn

under changes of variables, the only difference being that in the latter

the factor |detDF | instead detDF appears. To define an invariant

integral, we therefore need to make sure that all changes of coordinates

have positive Jacobian.

Definition. If M admits a smooth nonvanishing n-form we say

that M is orientable. An oriented manifold is a manifold together with

a given nonvanishing n-form.

If M is oriented with a given n-form Ω, a basis {v1, . . . , vn} of TpM

is called positive if Ω(v1, . . . , vn) > 0. There are many n-forms on

an oriented manifold which give the same positive bases; we call any

such n-form an orientation form. If (U,ϕ) is a connected coordinate

chart, we say that this chart is positive if the coordinate vector fields

{∂1, . . . , ∂n} form a positive basis of TqM for all q ∈M .

A map F : M → N between two oriented manifolds is said to be

orientation preserving if it pulls back an orientation form on N to an

orientation form of M . In terms of local coordinates given by positive

charts, one can see that a map is orientation preserving iff its Jacobian

determinant is positive.

Example. The standard orientation of Rn is given by the n-form

dx1 ∧ · · · ∧ dxn, where x are the Cartesian coordinates.

If ω is a compactly supported n-form in Rn, we may write ω =

f dx1 ∧ · · · ∧ dxn for some smooth compactly supported function f .

Then the integral of ω is defined by∫
Rn
ω :=

∫
Rn
f(x) dx1 · · · dxn.

If ω is a smooth 1-form in a manifold M whose support is compactly

contained in U for some positive chart (U,ϕ), then the integral of ω
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over M is defined by ∫
M

ω :=

∫
ϕ(U)

((ϕ)−1)∗ω.

Finally, if ω is a compactly supported n-form in a manifold M , the

integral of ω over M is defined by∫
M

ω :=
∑
j

∫
Uj

χjω.

where {Uj} is some open cover of supp(ω) by positive charts, and {χj}
is a partition of unity subordinate to the cover {Uj}.

Exercise 2.5. Prove that the definition of the integral is indepen-

dent of the choice of positive charts and the partition of unity.

The following result is a basic integration by parts formula which

implies the usual theorems of Gauss and Green.

Theorem 2.2. (Stokes theorem) If M is an oriented manifold with

boundary and if ω is a compactly supported (n− 1)-form on M , then∫
M

dω =

∫
∂M

i∗ω

where i : ∂M →M is the natural inclusion.

Here, if M is an oriented manifold with boundary, then ∂M has a

natural orientation defined as follows: for any point p ∈ ∂M , a basis

{E1, . . . , En−1} of Tp(∂M) is defined to be positive if {Np, E1, . . . , En−1}
is a positive basis of TpM where N is some outward pointing vector

field near ∂M (that is, there is a smooth curve γ : [0, ε) → M with

γ(0) = p and γ̇(0) = −Np).

Exercise 2.6. Prove that any manifold with boundary has an out-

ward pointing vector field, and show that the above definition gives a

valid orientation on ∂M .
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2.2. Riemannian manifolds

Riemannian metrics. If u is a 2-tensor field on M , we say that

u is symmetric if u(v, w) = u(w, v) for any tangent vectors v, w, and

that u is positive definite if u(v, v) > 0 unless v = 0.

Definition. Let M be a manifold. A Riemannian metric is a

symmetric positive definite 2-tensor field g on M . The pair (M, g) is

called a Riemannian manifold.

If g is a Riemannian metric on M , then gp : TpM ×TpM is an inner

product on TpM for any p ∈M . We will write

〈v, w〉 := g(v, w), |v| := 〈v, v〉1/2.

In local coordinates, a Riemannian metric is just a positive definite

symmetric matrix. To see this, let (U, x) be a chart of M , and write

v, w ∈ TqM for q ∈ U in terms of the coordinate vector fields ∂j as

v = vj∂j, w = wj∂j. Then

g(v, w) = g(∂j, ∂k)v
jwk.

This shows that g has the local coordinate expression

g = gjkdx
j ⊗ dxk

where gjk := g(∂j, ∂k) and the matrix (gjk)
n
j,k=1 is symmetric and pos-

itive definite. We will also write (gjk)nj,k=1 for the inverse matrix of

(gjk), and |g| := det(gjk) for the determinant.

Example. Some examples of Riemannian manifolds:

1. (Euclidean space) If Ω is a bounded open set in Rn, then (Ω, e)

is a Riemannian manifold if e is the Euclidean metric for which

e(v, w) = v · w is the Euclidean inner product of v, w ∈ TpΩ ≈ Rn.

In Cartesian coordinates, e is just the identity matrix.

2. If Ω is as above, then more generally (Ω, g) is a Riemannian manifold

if g(x) = (gjk(x))nj,k=1 is any family of positive definite symmetric

matrices whose elements depend smoothly on x ∈ Ω.

3. If Ω is a bounded open set in Rn with smooth boundary, then (Ω, g)

is a compact Riemannian manifold with boundary if g(x) is a family

of positive definite symmetric matrices depending smoothly on x ∈
Ω.
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4. (Hypersurfaces) Let S be a smooth hypersurface in Rn such that

S = f−1(0) for some smooth function f : Rn → R which satisfies

∇f 6= 0 when f = 0. Then S is a smooth manifold of dimension

n − 1, and the tangent space TpS for any p ∈ S can be identified

with {v ∈ Rn ; v ·∇f(p) = 0}. Using this identification, we define an

inner product gp(v, w) on TpS by taking the Euclidean inner product

of v and w interpreted as vectors in Rn. Then (S, g) is a Riemannian

manifold, and g is called the induced Riemannian metric on S (this

metric being induced by the Euclidean metric in Rn).

5. (Model spaces) The model spaces of Riemannian geometry are the

Euclidean space (Rn, e), the sphere (Sn, g) where Sn is the unit

sphere in Rn+1 and g is the induced Riemannian metric, and the

hyperbolic space (Hn, g) which may be realized by taking Hn to be

the unit ball in Rn with metric gjk(x) = 4
(1−|x|2)2

δjk.

The Riemannian metric allows to measure lengths and angles of

tangent vectors on a manifold, the length of a vector v ∈ TpM being

|v| and the angle between two vectors v, w ∈ TpM being the number

θ(v, w) ∈ [0, π] which satisfies

(2.1) cos θ(v, w) :=
〈v, w〉
|v||w|

.

Physically, one may think of a Riemannian metric g as the resistivity

of a conducting medium (in the introduction, the conductivity ma-

trix (γjk) corresponded formally to (|g|1/2gjk)), or as the inverse of

sound speed squared in a medium where acoustic waves propagate (if a

medium Ω ⊆ Rn has scalar sound speed c(x) then a natural Riemann-

ian metric is gjk(x) = c(x)−2δjk). In the latter case, regions where

g is large (resp. small) correspond to low velocity regions (resp. high

velocity regions). We will later define geodesics, which are length min-

imizing curves on a Riemannian manifold, and these tend to avoid low

velocity regions as one would expect.

Exercise 2.7. Use a partition of unity to prove that any smooth

manifold M admits a Riemannian metric.

Raising and lowering of indices. On a Riemannian manifold

(M, g) there is a canonical way of converting tangent vectors into cotan-

gent vectors and vice versa. We define a map

TpM → T ∗pM, v 7→ v[
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by requiring that v[(w) = 〈v, w〉. This map (called the ’flat’ operator)

is an isomorphism, which is given in local coordinates by

(vj∂j)
[ = vj dx

j, where vj := gjkv
k.

We say that v[ is the cotangent vector obtained from v by lowering

indices. The inverse of this map is the ’sharp’ operator

T ∗pM → TpM, ξ 7→ ξ]

given in local coordinates by

(ξj dx
j)] = ξj∂j, where ξj := gjkξk.

We say that ξ] is obtained from ξ by raising indices with respect to

the metric g.

A standard example of this construction is the metric gradient. If

f ∈ C∞(M), the metric gradient of f is the vector field

grad(f) := (df)].

In local coordinates, grad(f) = gjk(∂jf)∂k.

Inner products of tensors. If (M, g) is a Riemannian manifold,

we can use the Riemannian metric g to define inner products of differ-

ential forms and other tensors in a canonical way. We will mostly use

the inner product of 1-forms, defined via the sharp operator by

〈α, β〉 := 〈α], β]〉.

In local coordinates one has 〈α, β〉 = gjkαjβk and gjk = 〈dxj, dxk〉.
More generally, if u and v are k-tensor fields with local coordinate

representations u = ui1···ik dx
i1⊗· · ·⊗ dxik , v = vi1···ik dx

i1⊗· · ·⊗ dxik ,

we define

(2.2) 〈u, v〉 := gi1j1 · · · gikjkui1···ikvj1···jk .

This definition turns out to be independent of the choice of coordinates,

and it gives a valid inner product on k-tensor fields.

Orthonormal frames. If U is an open subset of M , we say that

a set {E1, . . . , En} of vector fields in U is a local orthonormal frame if

{E1(q), . . . , En(q)} forms an orthonormal basis of TqM for any q ∈ U .

Lemma 2.3. (Local orthonormal frame) If (M, g) is a Riemannian

manifold, then for any point p ∈M there is a local orthonormal frame

in some neighborhood of p.
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If {Ej} is a local orthonormal frame, the dual frame {εj} which is

characterized by εj(Ek) = δjk gives an orthonormal basis of T ∗qM for

any q near p. The inner product in (2.2) is the unique inner product

on k-tensor fields such that {εi1 ⊗· · ·⊗ εik} gives an orthonormal basis

of T k(TqM) for q near p whenever {εj} is a local orthonormal frame of

1-forms near p.

Exercise 2.8. Prove the lemma by applying the Gram-Schmidt

orthonormalization procedure to a basis {∂j} of coordinate vector fields,

and prove the statements after the lemma.

Volume form, integration, and L2 Sobolev spaces. From this

point on, all Riemannian manifolds will be assumed to be oriented.

Clearly near any point p in (M, g) there is a positive local orthonormal

frame (that is, a local orthonormal frame {Ej} which gives a positive

orthonormal basis of TqM for q near p).

Lemma 2.4. (Volume form) Let (M, g) be a Riemannian manifold.

There is a unique n-form on M , denoted by dV and called the volume

form, such that dV (E1, . . . , En) = 1 for any positive local orthonormal

frame {Ej}. In local coordinates

dV = |g|1/2 dx1 ∧ . . . ∧ dxn.

Exercise 2.9. Prove this lemma.

If f is a function on (M, g), we can use the volume form to obtain

an n-form f dV . The integral of f over M is then defined to be the

integral of the n-form f dV . Thus, on a Riemannian manifold there is

a canonical way to integrate functions (instead of just n-forms).

If u, v ∈ C∞(M) are complex valued functions, we define the L2

inner product by

(u, v) = (u, v)L2(M) :=

∫
M

uv̄ dV.

The completion of C∞(M) with respect to this inner product is a

Hilbert space denoted by L2(M) or L2(M,dV ). It consists of square

integrable functions defined almost everywhere on M with respect to

the measure dV . The L2 norm is defined by

‖u‖ = ‖u‖L2(M) := (u, u)
1/2

L2(M).
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Similarly, we may define the spaces of square integrable k-forms or k-

tensor fields, denoted by L2(M,ΛkM) or L2(M,T kM), by using the

inner product

(u, v) :=

∫
M

〈u, v̄〉 dV, u, v ∈ C∞(M,T kM) complex valued.

We may use the above inner products to give a definition of low

order Sobolev spaces on Riemannian manifolds which does not involve

local coordinates. We define the H1(M) inner product

(u, v)H1(M) := (u, v) + (du, dv), u, v ∈ C∞(M) complex valued.

The space H1(M) (resp. H1
0 (M)) is defined to be the completion of

C∞(M) (resp. C∞c (M int)) with respect to this inner product. These are

subspaces of L2(M) which have first order weak derivatives in L2(M),

and they coincide with the spaces defined in the usual way by using

local coordinates. Also, we define H−1(M) to be the dual space of

H1
0 (M).

Codifferential. Using the inner product on k-forms, we can define

the codifferential operator δ as the adjoint of the exterior derivative via

the relation

(δu, v) = (u, dv)

where u ∈ C∞(M,Λk) and v ∈ C∞c (M int,Λk−1). It can be shown that

δ gives a well-defined map

δ : C∞(M,Λk)→ C∞(M,Λk−1).

We will only use δ for 1-forms, and in this case the operator can be

easily defined by a local coordinate expression. Let α be a 1-form in

M , let (U, x) be a chart and let ϕ ∈ C∞c (U). One computes in local

coordinates

(α, dv) =

∫
U

〈α, dv̄〉 dV =

∫
U

gjkαj∂kv |g|1/2 dx

= −
∫
U

|g|−1/2∂k(|g|1/2gjkαj)v̄ dV.

This computation shows that the function δα, defined in local coordi-

nates by

δα := −|g|−1/2∂j(|g|1/2gjkαk),
is a smooth function in M and satisfies (δα, v) = (α, dv).



2.2. RIEMANNIAN MANIFOLDS 23

It follows that δα is related to the divergence of vector fields by

δα = −div(α]), where the divergence is defined by

div(X) := |g|−1/2∂j(|g|1/2Xj).

Exercise 2.10. (Hodge star operator) Let (M, g) be a Riemannian

manifold of dimension n. If ω and η are k-forms on M , show that the

identity

ω ∧ ∗η = 〈ω, η〉 dV

determines uniquely a linear operator (called the Hodge star operator)

∗ : C∞(M,Λk)→ C∞(M,Λn−k).

Prove the following properties:

• ∗∗ = (−1)k(n−k) on k-forms

• ∗1 = dV

• ∗(ε1 ∧ . . . ∧ εk) = εk+1 ∧ . . . ∧ εn whenever (ε1, . . . , εn) is a

positive local orthonormal frame on T ∗M

• 〈∗ω, η〉 = −〈ω, ∗η〉 when ω, η are 1-forms and dim(M) = 2

(that is, on 2D manifolds the Hodge star on 1-forms corre-

sponds to rotation by 90◦)

Prove that the operator

δ := (−1)(k−1)(n−k)−1 ∗ d ∗ on k-forms

gives a map δ : C∞(M,Λk)→ C∞(M,Λk−1) satisfying (δu, v) = (u, dv)

for compactly supported v, and thus gives a valid definition of the

codifferential on forms of any order.

Conformality. As the last topic in this section, we discuss the

notion of conformality of manifolds.

Definition. Two metrics g1 and g2 on a manifold M are called

conformal if g2 = cg1 for a smooth positive function c on M . A diffeo-

morphism f : (M, g)→ (M ′, g′) is called a conformal transformation if

f ∗g′ is conformal to g, that is,

f ∗g′ = cg.

Two Riemannian manifolds are called conformal if there is a conformal

transformation between them.
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We relate this definition of conformality to the standard one in

complex analysis via the concept of angle θ(v, w) = θg(v, w) ∈ [0, π]

defined in (2.1).

Lemma 2.5. (Conformal = angle-preserving) Let f : (M, g) →
(M ′, g′) be a diffeomorphism. The following are equivalent.

(1) f is a conformal transformation.

(2) f preserves angles in the sense that θg(v, w) = θg′(f∗v, f∗w).

Exercise 2.11. Prove the lemma.

It follows that f is a conformal transformation iff for any point

p and tangent vectors v and w, and for any curves γv and γw with

γ̇v(0) = v, γ̇w(0) = w, the curves f ◦γv and f ◦γw intersect in the same

angle as γv and γw. This corresponds to the standard interpretation of

conformality.

The two dimensional case is special because of the classical fact that

orientation preserving conformal maps are holomorphic. The proof is

given for completeness.

Lemma 2.6. (Conformal = holomorphic) Let Ω and Ω̃ be open sets

in R2. An orientation preserving map f : (Ω, e)→ (Ω̃, e) is conformal

iff it is holomorphic and bijective.

Proof. We use complex notation and write z = x+ iy, f = u+ iv.

If f is conformal then it is bijective and f ∗e = ce. The last condition

means that for all z ∈ Ω and for v, w ∈ R2,

c(z)v · w = (f∗v) · (f∗w) = Df(z)v ·Df(z)w = Df(z)tDf(z)v · w.

Since Df(z) = ( ux uyvx vy ), this implies(
u2
x + v2

x uxuy + vxvy
uxuy + vxvy u2

y + v2
y

)
=

(
c 0

0 c

)
.

Thus the vectors (ux vx)
t and (uy vy)

t are orthogonal and have the

same length. Since f is orientation preserving so detDf > 0, we must

have

ux = vy, uy = −vx.

This shows that f is holomorphic. The converse follows by running the

argument backwards. �
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It follows from the existence of isothermal coordinates that any 2D

Riemannian manifold is locally conformal to a set in Euclidean space.

The conformal structure of manifolds with dimension n ≥ 3 is much

more complicated. However, the model spaces are locally conformally

Euclidean.

Lemma 2.7. (1) Let (Sn, g) be the unit sphere in Rn+1 with its

induced metric, and let N = en+1 be the north pole. Then the

stereographic projection

f : (Sn r {N}, g)→ (Rn, e), f(y, yn+1) :=
y

1− yn+1

is a conformal transformation.

(2) Hyperbolic space (Hn, g) where Hn is the unit ball B in Rn

and gjk(x) = 4
(1−|x|2)2

δjk, is conformal to (B, e).

Exercise 2.12. Prove the lemma.

Finally, we mention Liouville’s theorem which characterizes all con-

formal transformations in Rn for n ≥ 3. This result shows that up to

translation, scaling, and rotation, the only conformal transformations

are the identity map and Kelvin transform (this is in contrast to the

2D case where there is a rich family of conformal transformations, the

holomorphic bijective maps). See [9] for a proof.

Theorem. (Liouville) If Ω, Ω̃ ⊆ Rn with n ≥ 3, then an orienta-

tion preserving diffeomorphism f : (Ω, e)→ (Ω̃, e) is conformal iff

f(x) = αAh(x− x0) + b

where α ∈ R, A is an n×n orthogonal matrix, h(x) = x or h(x) = x
|x|2 ,

x0 ∈ Rn r Ω, and b ∈ Rn.

2.3. Laplace-Beltrami operator

Definition. In this section we will see that on any Riemannian

manifold there is a canonical second order elliptic operator, called the

Laplace-Beltrami operator, which is an analog of the usual Laplacian

in Rn.

Motivation. Let first Ω be a bounded domain in Rn with smooth

boundary, and consider the Laplace operator

∆ =
n∑
j=1

∂2

∂x2
j

.
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Solutions of the equation ∆u = 0 are called harmonic functions, and

by standard results for elliptic PDE [5, Section 6], for any f ∈ H1(Ω)

there is a unique solution u ∈ H1(Ω) of the Dirichlet problem

(2.3)

{
−∆u = 0 in Ω,

u = f on ∂Ω.

The last line means that u− f ∈ H1
0 (Ω).

One way to produce the solution of (2.3) is based on variational

methods and Dirichlet’s principle [5, Section 2]. We define the Dirichlet

energy

E(v) :=
1

2

∫
Ω

|∇v|2 dx, v ∈ H1(Ω).

If we define the admissible class

Af := {v ∈ H1(Ω) ; v = f on ∂Ω},

then the solution of (2.3) is the unique function u ∈ Af which mini-

mizes the Dirichlet energy:

E(u) ≤ E(v) for all v ∈ Af .

The heuristic idea is that the solution of (2.3) represents a physical

system in equilibrium, and therefore should minimize a suitable energy

functional. The point is that one can start from the energy functional

E( · ) and conclude that any minimizer u must satisfy ∆u = 0, which

gives another way to define the Laplace operator.

From this point on, let (M, g) be a compact Riemannian manifold

with smooth boundary. Although there is no obvious analog of the co-

ordinate definition of ∆ in Rn, there is a natural analog of the Dirichlet

energy. It is given by

E(v) :=
1

2

∫
M

|dv|2 dV, v ∈ H1(M).

Here |dv| is the Riemannian length of the 1-form dv, and dV is the

volume form.

We wish to find a differential equation which is satisfied by min-

imizers of E( · ). Suppose u ∈ H1(M) is a minimizer which satisfies
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E(u) ≤ E(u+ tϕ) for all t ∈ R and all ϕ ∈ C∞c (M int). We have

E(u+ tϕ) =
1

2

∫
M

〈d(u+ tϕ), d(u+ tϕ)〉 dV

= E(u) + t

∫
M

〈du, dϕ〉 dV + t2E(ϕ).

Since Iϕ(t) := E(u+ tϕ) is a smooth function of t for fixed ϕ, and since

Iϕ(0) ≤ Iϕ(t) for |t| small, we must have I ′ϕ(0) = 0. This shows that if

u is a minimizer, then ∫
M

〈du, dϕ〉 dV = 0

for any choice of ϕ ∈ C∞c (M int). By the properties of the codifferential

δ, this implies that ∫
M

(δdu)ϕdV = 0

for all ϕ ∈ C∞c (M int). Thus any minimizer u has to satisfy the equation

δdu = 0 in M.

We have arrived at the definition of the Laplace-Beltrami operator.

Definition. If (M, g) is a compact Riemannian manifold (with or

without boundary), the Laplace-Beltrami operator is defined by

∆gu := −δdu.

The next result implies, in particular, that in Euclidean space ∆g

is just the usual Laplacian.

Lemma 2.8. In local coordinates

∆gu = |g|−1/2∂j(|g|1/2gjk∂ku)

where, as before, |g| = det(gjk) is the determinant of g.

Proof. Follows from the coordinate expression for δ. �

Weak solutions. We move on to the question of finding weak

solutions to the Dirichlet problem

(2.4)

{
−∆gu = F in M,

u = 0 on ∂M.
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Here F ∈ H−1(M) (thus F is a bounded linear functional on H1
0 (M)).

By definition, a weak solution is a function u ∈ H1
0 (M) which satisfies∫

M

〈du, dϕ〉 dV = F (ϕ) for all ϕ ∈ H1
0 (M).

We will have use of the following compactness result also later.

Theorem. (Rellich-Kondrachov compact embedding theorem) Let

(M, g) be a compact Riemannian manifold with smooth boundary. Then

the natural inclusion i : H1(M)→ L2(M) is a compact operator.

Proof. See [5, Chapter 5] for the Euclidean case and [20] for the

Riemannian case. �

The solvability of (2.4) will be a consequence of the following in-

equality.

Theorem. (Poincaré inequality) There is C > 0 such that

‖u‖L2(M) ≤ C‖du‖L2(M), u ∈ H1
0 (M).

Proof. Suppose the claim is false. Then there is a sequence (uk)
∞
k=1

with uk ∈ H1
0 (M) and

‖uk‖L2(M) > k‖duk‖L2(M).

Letting vk = uk/‖uk‖L2(M), we have ‖vk‖L2(M) = 1 and

‖dvk‖L2(M) <
1

k
.

Thus (vk) is a bounded sequence in H1
0 (M), and therefore it has a

subsequence (also denoted by (vk)) which converges weakly to some

v ∈ H1
0 (M). The compact embedding H1(M) ↪→ L2(M) implies that

vk → v in L2(M).

It follows that dvk → dv in H−1(M). But also dvk → 0 in L2(M), and

uniqueness of limits shows that dv = 0. Now any function v ∈ H1(M)

with dv = 0 must be constant on each connected component of M (this

follows from the corresponding result in Rn), and since v ∈ H1
0 (M) we

get that v = 0. This contradicts the fact that ‖vk‖L2(M) = 1. �

It follows from the Poincaré inequality that for u ∈ H1
0 (M),

‖du‖2
L2(M) ≤ ‖u‖2

H1(M) = ‖u‖2
L2(M) + ‖du‖2

L2(M) ≤ C‖du‖2
L2(M).
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Consequently the norms ‖ · ‖H1(M) and ‖d · ‖L2(M) are equivalent norms

on H1
0 (M) (they induce the same topology). We can now prove the

solvability of the Dirichlet problem.

Proposition 2.9. (Existence of weak solutions) The problem (2.4)

has a unique weak solution u ∈ H1
0 (M) for any F ∈ H−1(M). The

solution operator

G : H−1(M)→ H1
0 (M), F 7→ u,

is a bounded linear operator.

Proof. Consider the bilinear form

B[u, v] :=

∫
M

〈du, dv〉 dV, u, v ∈ H1
0 (M).

This satisfies B[u, v] = B[v, u], |B[u, u]| ≤ ‖u‖H1
0 (M)‖v‖H1

0 (M), and

B[u, u] =

∫
M

|du|2 dV = ‖du‖2
L2(M) ≥ C‖u‖2

H1(M)

by using the equivalent norms on H1
0 (M). Thus H1

0 (M) equipped with

the inner product B[ · , · ] is the same Hilbert space as H1
0 (M) equipped

with the usual inner product ( · , · )H1(M). Since F is an element of the

dual of H1
0 (M), the Riesz representation theorem shows that there is

a unique u ∈ H1
0 (M) with

B[u, ϕ] = F (ϕ), ϕ ∈ H1
0 (M).

This is the required unique weak solution. Writing u = GF , the bound-

edness of G follows from the estimate ‖u‖H1(M) ≤ ‖F‖H−1(M) also given

by the Riesz representation theorem. �

Corollary 2.10. (Existence of weak solutions) The problem

(2.5)

{
−∆gu = 0 in M,

u = f on ∂M.

has a unique weak solution u ∈ H1(M) for any f ∈ H1(M), and the

solution satisfies ‖u‖H1(M) ≤ C‖f‖H1(M).

Proof. Let F = ∆gf ∈ H−1(M) (one defines F (ϕ) := −(df, dϕ)).

Then (2.5) is equivalent with{
−∆g(u− f) = F in M,

u− f = 0 on ∂M.
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This has a unique solution u0 = GF with ‖u0‖H1(M) ≤ C‖f‖H1(M),

and one can take u = u0 + f . �

Spectral theory. Combined with the spectral theorem for com-

pact operators, the previous results show that the spectrum of −∆g

consists of a discrete set of eigenvalues and there is an orthonormal

basis of L2(M) consisting of eigenfunctions of −∆g.

Proposition 2.11. (Spectral theory for −∆g) Let (M, g) be a com-

pact Riemannian manifold with smooth boundary. There exist numbers

0 < λ1 ≤ λ2 ≤ . . . and an orthonormal basis {φl}∞l=1 of L2(M) such

that {
−∆gφl = λlφl in M,

φl ∈ H1
0 (M).

We write Spec(−∆g) = {λ1, λ2, . . .}. If λ /∈ Spec(−∆g), then −∆g − λ
is an isomorphism from H1

0 (M) onto H−1(M).

Before giving the proof, we note that by standard Hilbert space

theory any function f ∈ L2(M) can be written as an L2-convergent

Fourier series

f =
∞∑
l=1

(f, φl)L2(M)φl

where (f, φl) is the lth Fourier coefficient. These eigenfunction (or

Fourier) expansions can sometimes be used as a substitute in M for

the Fourier transform in Euclidean space, as we will see in Chapter 4.

Proof of Proposition 2.11. Let G : H−1(M) → H1
0 (M) be

the solution operator from Proposition 2.9. By compact embedding,

we have that G : L2(M) → L2(M) is compact. It is also self-adjoint

and positive semidefinite, since for f, h ∈ L2(M) (with u = Gf)

(Gf, h) = (u,−∆gGh) = (du, dGh) = (−∆gu,Gh) = (f,Gh),

(Gf, f) = (Gf,−∆gGf) = (dGf, dGf) ≥ 0.

By the spectral theorem for compact operators, there exist µ1 ≥ µ2 ≥
. . . with µj → 0 and φl ∈ L2(M) with Gφl = µlφl such that {φl}∞l=1 is

an orthonormal basis of L2(M). Note that 0 is not in the spectrum of

G, since Gf = 0 implies f = 0. Taking λl = 1
µl

gives −∆gφl = λlφl. If

λ 6= λl for all l then for F ∈ H−1(M),

(−∆g − λ)u = F ⇔ u = G(F + λu) ⇔ (
1

λ
Id−G)u =

1

λ
GF.
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Since 1
λ
6= µl for all l, 1

λ
Id−G is invertible and we see that −∆g − λ is

bijective and bounded, therefore an isomorphism. �

We conclude the section with an analog of Proposition 2.11 where

the Laplace-Beltrami operator is replaced by the Schrödinger operator

−∆g +V . The proof is the same except for minor modifications and is

left as an exercise. The main point is that for λ outside the discrete set

Spec(−∆g + V ), this result implies unique solvability for the Dirichlet

problem {
(−∆g + V − λ)u = 0 in M,

u = f on ∂M

with the norm estimate ‖u‖H1(M) ≤ C‖f‖H1(M).

Proposition 2.12. (Spectral theory for −∆g + V ) Let (M, g) be a

compact Riemannian manifold with smooth boundary, and assume that

V ∈ L∞(M) is real valued. There exist numbers λ1 ≤ λ2 ≤ . . . and an

orthonormal basis {ψl}∞l=1 of L2(M) such that{
(−∆g + V )ψl = λlψl in M,

ψl ∈ H1
0 (M).

We write Spec(−∆g + V ) = {λ1, λ2, . . .}. If λ /∈ Spec(−∆g + V ), then

−∆g + V − λ is an isomorphism from H1
0 (M) onto H−1(M).

Exercise 2.13. Prove this result by first showing an analog of

Proposition 2.9 where−∆g is replaced by−∆g+V+k0 for k0 sufficiently

large, and then by following the proof of Proposition 2.11 where G is

replaced by the inverse operator for −∆g + V + k0.

2.4. DN map

Definition. We now rigorously define the Dirichlet-to-Neumann

map, or DN map for short, discussed in the introduction. Let (M, g)

be a compact manifold with smooth boundary, and let V ∈ L∞(M).

Proposition 2.12 shows that the Dirichlet problem

(2.6)

{
(−∆g + V )u = 0 in M,

u = f on ∂M

has a unique solution u ∈ H1(M) for any f ∈ H1(M), provided that 0

is not a Dirichlet eigenvalue (meaning that 0 /∈ Spec(−∆g + V )). We
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make the standing assumption that all Schrödinger operators are such

that

0 is not a Dirichlet eigenvalue of −∆g + V .

As mentioned in the introduction, it would be easy to remove this

assumption by using so called Cauchy data sets instead of the DN

map.

If 0 is not a Dirichlet eigenvalue, then (2.6) is uniquely solvable

for any f ∈ H1(M). If f ∈ H1
0 (M) then u = 0 is a solution (since

then u − f ∈ H1
0 (M)), which means that the solution with boundary

value f coincides with the solution with boundary value f + ϕ where

ϕ ∈ H1
0 (M). Motivated by this, we define the quotient space

H1/2(∂M) := H1(M)/H1
0 (M).

This is a Hilbert space which can be identified with a space of functions

on ∂M which have 1/2 derivatives in L2(∂M), but the abstract setup

will be enough for us. We also define H−1/2(∂M) as the dual space of

H1/2(∂M).

By the above discussion, the Dirichlet problem (2.6) is well posed

for boundary values f ∈ H1/2(M). Denoting the solution by uf , the

DN map is formally defined as the map

Λg,V : f 7→ ∂νuf |∂M .

Here, for sufficiently smooth u, the normal derivative is defined by

∂νu|∂M := 〈∇u, ν〉|∂M .

To find a rigorous definition of Λg we will use an integration by parts

formula.

Theorem. (Green’s formula) If u, v ∈ C2(M) then∫
∂M

(∂νu)v dS =

∫
M

(∆gu)v dV +

∫
M

〈du, dv〉 dV.

Exercise 2.14. Prove this formula by using Stokes’ theorem.
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Let now f, h ∈ H1/2(∂M), let uf be the solution of (2.6), and let

eh be any function in H1(M) with eh|∂M = h (with natural interpreta-

tions). Then, again purely formally,

〈Λg,V f, h〉 =

∫
∂M

(∂νuf )eh dS =

∫
M

(∆guf )eh dV +

∫
M

〈duf , deh〉 dV

=

∫
M

[〈duf , deh〉+ V ufeh] dV.

We have finally arrived at the precise definition of Λg,V .

Definition. Λg,V is the linear map from H1/2(∂Ω) to H−1/2(∂Ω)

defined via the bilinear form

〈Λg,V f, h〉 =

∫
M

[〈duf , deh〉+ V ufeh] dV, f, h ∈ H1/2(∂M),

where uf and eh are as above.

Exercise 2.15. Prove that the bilinear form indeed gives a well

defined map H1/2(∂Ω)→ H−1/2(∂Ω).

The DN map is also self-adjoint:

Lemma 2.13. If V is real valued, then

〈Λg,V f, h〉 = 〈f,Λg,V h〉, f, h ∈ H1/2(∂M).

Exercise 2.16. Prove the lemma.

Integral identity. The main point in this section is an integral

identity which relates the difference of two DN maps to an integral

over M involving the difference of two potentials. This identity is the

starting point for recovering interior information (the potentials in M)

from boundary measurements (the DN maps on ∂M).

Proposition 2.14. (Integral identity) Let (M, g) be a compact Rie-

mannian manifold with smooth boundary, and let V1, V2 ∈ L∞(M) be

real valued. Then

〈(Λg,V1 − Λg,V2)f1, f2〉 =

∫
M

(V1 − V2)u1u2 dV, f1, f2 ∈ H1/2(∂M),

where uj ∈ H1(M) are the solutions of (−∆g + Vj)uj = 0 in M with

uj|∂M = fj.



34 2. RIEMANNIAN GEOMETRY

Proof. By definition and by self-adjointness of Λg,V2 ,

〈Λg,V1f1, f2〉 =

∫
M

[〈du1, du2〉+ V1u1u2] dV,

〈Λg,V2f1, f2〉 = 〈f1,Λg,V2f2〉 =

∫
M

[〈du1, du2〉+ V2u1u2] dV.

The result follows by substracting the two identities. �

In this text we are interested in uniqueness results, where one would

like to show that Λg,V1 = Λg,V2 implies V1 = V2. For this purpose,

the following corollary is appropriate. It shows that if two DN maps

coincide, then the integral of the difference of potentials against the

product of any two solutions (with no requirements for their boundary

values) vanishes.

Corollary 2.15. (Integral identity) Let (M, g) be a compact Rie-

mannian manifold with smooth boundary, and let V1, V2 ∈ L∞(M) be

real valued. If Λg,V1 = Λg,V2, then∫
M

(V1 − V2)u1u2 dV = 0

for any uj ∈ H1(M) which satisfy (−∆g + Vj)uj = 0 in M .

2.5. Geodesics and covariant derivative

In this section we let (M, g) be a connected Riemannian manifold

without boundary (for our purposes, geodesics and the Levi-Civita con-

nection on manifolds with boundary can be defined by embedding into

a compact manifold without boundary).

Lengths of curves. For the analysis of the Calderón problem on

manifolds we will need to introduce some basic properties of geodesics.

These are locally length minimizing curves on (M, g), so we begin by

discussing lengths of curves.

Definition. A smooth map γ : [a, b] → M whose tangent vector

γ̇(t) is always nonzero is called a regular curve. The length of γ is

defined by

L(γ) :=

∫ b

a

|γ̇(t)| dt.
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The length of a piecewise regular curve is defined as the sum of lengths

of the regular parts. The Riemannian distance between two points

p, q ∈M is defined by

d(p, q) := inf{L(γ) ; γ : [a, b]→M is a piecewise regular curve with

γ(a) = p and γ(b) = q}.

Exercise 2.17. Show that L(γ) is independent of the way the curve

γ is parametrized, and that we may always parametrize γ by arc length

so that |γ̇(t)| = 1 for all t.

Exercise 2.18. Show that d is a metric distance function on M ,

and that (M,d) is a metric space whose topology is the same as the

original topology on M .

Geodesic equation. We now wish to show that any length mini-

mizing curve satisfies a certain ordinary differential equation. Suppose

that γ : [a, b]→ M is a length minimizing curve between two points p

and q parametrized by arc length, and let γs : [a, b]→M be a family of

curves from p to q such that γ0(t) = γ(t) and Γ(s, t) := γs(t) depends

smoothly on s ∈ (−ε, ε) and on t ∈ [a, b]. We assume for simplicity

that each γs is regular and contained in a coordinate neighborhood of

M , and write xs(t) = (x1
s(t), . . . , x

n
s (t)) and x(t) = x0(t) instead of

γs(t) and γ(t) in local coordinates.

Lemma 2.16. The length minimizing curve x(t) satisfies the so

called geodesic equation

ẍl(t) + Γljk(x(t))ẋj(t)ẋk(t) = 0, 1 ≤ l ≤ n,

where Γljk is the Christoffel symbol

Γljk =
1

2
glm(∂jgkm + ∂kgjm − ∂mgjk).

Proof. Since γ minimizes length from p to q, we have

L(γ0) ≤ L(γs), s ∈ (−ε, ε).

Define

I(s) := L(γs) =

∫ b

a

(gpq(xs(t))ẋ
p
s(t)ẋ

q
s(t))

1/2 dt.

Since I is smooth and I(0) ≤ I(s) for |s| < ε, we must have I ′(0) = 0.

To prepare for computing the derivative, define two vector fields

T (t) := ∂txs(t)|s=0, V (t) := ∂sxs(t)|s=0.
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Using that |γ̇0(t)| = 1 and (gjk) is symmetric, we have

I ′(0) =
1

2

∫ b

a

(∂rgpq(x(t))V r(t)T p(t)T q(t) + 2gpq(x(t))V̇ p(t)T q(t)) dt.

Integrating by parts in the last term, this shows that

I ′(0) =

∫ b

a

[
1

2
∂rgpq(x)T pT q − ∂mgrq(x)TmT q − grq(x)Ṫ q

]
V r dt.

The last expression vanishes for all possible vector fields V (t) obtained

as ∂sxs(t)|s=0. It can be seen that any vector field with V (a) = V (b) = 0

arises as V (t) for some family of curves γs(t). This implies that

1

2
∂rgpq(x)T pT q − ∂mgrq(x)TmT q − grq(x)Ṫ q = 0, t ∈ [a, b], 1 ≤ r ≤ n.

Multiplying this by glr and summing over r, and using that

∂mgrq(x)TmT q =
1

2
(∂mgrq(x) + ∂qgrm(x))TmT q,

gives the geodesic equation upon relabeling indices. �

Covariant derivative. It would be possible to develop the theory

of geodesics based on the ODE derived in Lemma 2.16. However, it will

be very useful to be able to do computations such as those in Lemma

2.16 in an invariant way, without resorting to local coordinates. For

this purpose we want to be able to take derivatives of vector fields in

a way which is compatible with the Riemannian inner product 〈 · , · 〉.
We first recall the commutator of vector fields. Any vector field

X ∈ C∞(M,TM) gives rise to a first order differential operator X :

C∞(M)→ C∞(M) by

Xf(p) = X(p)f.

If X and Y are vector fields, their commutator [X, Y ] is the differential

operator acting on smooth functions by

[X, Y ]f := X(Y f)− Y (Xf).

The commutator of two vector fields is itself a vector field.

The next result is sometimes called the fundamental lemma of Rie-

mannian geometry.

Theorem. (Levi-Civita connection) On any Riemannian manifold

(M, g) there is a unique R-bilinear map

D : C∞(M,TM)× C∞(M,TM)→ C∞(M,TM), (X, Y ) 7→ DXY,



2.5. GEODESICS AND COVARIANT DERIVATIVE 37

which satisfies

(1) DfXY = fDXY (linearity)

(2) DX(fY ) = fDXY + (Xf)Y (Leibniz rule)

(3) DXY −DYX = [X, Y ] (symmetry)

(4) X〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉 (metric connection).

Here X, Y, Z are vector fields and f is a smooth function on M .

Proof. See [12]. �

The map D is called the Levi-Civita connection of (M, g). The

expression DXY is called the covariant derivative of the vector field Y

in direction X.

Example. In (Rn, e) the Levi-Civita connection is given by

DXY = Xj(∂jY
k)∂k.

This is just the natural derivative of Y in direction X.

Example. On a general manifold (M, g), one has

DXY = Xj(∂jY
k)∂k +XjY kΓljk∂l

where Γljk are the Christoffel symbols from Lemma 2.16, and they also

satisfy

D∂j∂k = Γljk∂l.

Covariant derivative of tensors. At this point we will define the

connection and covariant derivatives also for other tensor fields. Let X

be a vector field on M . The covariant derivative of 0-tensor fields is

given by

DXf := Xf.

For k-tensor fields u, the covariant derivative is defined by

DXu(Y1, . . . , Yk) := X(u(Y1, . . . , Yk))−
k∑
j=1

u(Y1, . . . , DXYj, . . . , Yk).

Exercise 2.19. Show that these formulas give a well defined co-

variant derivative

DX : C∞(M,T kM)→ C∞(M,T kM).
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Example. The main example of the above construction is the co-

variant derivative of 1-forms, which is uniquely specified by the identity

D∂jdx
k = −Γkjldx

l.

By using DX on tensors, it is possible to define the total covariant

derivative as the map

D : C∞(M,T kM)→ C∞(M,T k+1M),

Du(X, Y1, . . . , Yk) := DXu(Y1, . . . , Yk).

Example. On 0-forms Df = df .

Example. The most important use for the total covariant deriva-

tive in these notes is the covariant Hessian. If f is a smooth function,

then the covariant Hessian of f is

Hess(f) := D2f.

In local coordinates it is given by

D2f = (∂j∂kf − Γljk∂lf) dxj ⊗ dxk.

Finally, we mention that the total covariant derivative can be used

to define higher order Sobolev spaces invariantly on a Riemannian man-

ifold.

Definition. If k ≥ 0, consider the inner product on C∞(M) given

by

(u, v)Hk(M) :=
k∑
j=0

(Dju,Djv)L2(M).

Here the L2 norm is the natural one using the inner product on tensors.

The Sobolev space Hk(M) is defined to be the completion of C∞(M)

with respect to this inner product.

Geodesics. Let us return to length minimizing curves. If γ :

[a, b] → M is a curve and X : [a, b] → TM is a smooth vector field

along γ (meaning that X(t) ∈ Tγ(t)M), we define the derivative of X

along γ by

Dγ̇X := Dγ̇X̃

where X̃ is any vector field defined in a neighborhood of γ([a, b]) such

that X̃γ(t) = Xγ(t). It is easy to see that this does not depend on the
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choice of X̃. The relation to geodesics now comes from the fact that

in local coordinates, if γ(t) corresponds to x(t),

Dγ̇ γ̇ = Dẋj∂j(ẋ
k∂k)

= (ẍl + Γljk(x)ẋjẋk)∂l.

Thus the geodesic equation is satisfied iff Dγ̇ γ̇ = 0. We now give the

precise definition of a geodesic.

Definition. A regular curve γ is called a geodesic if Dγ̇ γ̇ = 0.

The arguments above give evidence to the following result, which

is proved for instance in [12].

Theorem. (Geodesics minimize length) If γ is a piecewise regular

length minimizing curve from p to q, then γ is regular and Dγ̇ γ̇ = 0.

Conversely, if γ is a regular curve and Dγ̇ γ̇ = 0, then γ minimizes

length at least locally.

We next list some basic properties of geodesics.

Theorem. (Properties of geodesics) Let (M, g) be a Riemannian

manifold without boundary. Then

(1) for any p ∈ M and v ∈ TpM , there is an open interval I

containing 0 and a geodesic γv : I → M with γv(0) = p and

γ̇v(0) = v,

(2) any two geodesics with γ1(0) = γ2(0) and γ̇1(0) = γ̇2(0) agree

in their common domain,

(3) any geodesic satisfies |γ̇(t)| = const,

(4) if M is compact then any geodesic γ can be uniquely extended

as a geodesic defined on all of R.

Exercise 2.20. Prove this theorem by using the existence and

uniqueness of solutions to ordinary differential equations.

By (3) in the theorem, we may (and will) always assume that

geodesics are parametrized by arc length and satisfy |γ̇| = 1. Part

(4) says that the maximal domain of any geodesic on a closed manifold

is R, where the maximal domain is the largest interval to which the

geodesic can be extended. We will always assume that the geodesics

are defined on their maximal domain.
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Normal coordinates. The following important concept enables

us to parametrize a manifold locally by its tangent space.

Definition. If p ∈M let Ep := {v ∈ TpM ; γv is defined on [0, 1]},
and define the exponential map

expp : Ep →M, expp(v) = γv(1).

This is a smooth map and satisfies expp(tv) = γv(t). Thus, the

exponential map is obtained by following radial geodesics starting from

the point p. This parametrization also gives rise to a very important

system of coordinates on Riemannian manifolds.

Theorem. (Normal coordinates) For any p ∈M , expp is a diffeo-

morphism from some neighborhood V of 0 in TpM onto a neighborhood

of p in M . If {e1, . . . , en} is an orthonormal basis of TpM and we iden-

tify TpM with Rn via vjej ↔ (v1, . . . , vn), then there is a coordinate

chart (U,ϕ) such that ϕ = exp−1
p : U → Rn and

(1) ϕ(p) = 0,

(2) if v ∈ TpM then ϕ(γv(t)) = (tv1, . . . , tvn),

(3) one has

gjk(0) = δjk, ∂lgjk(0) = 0, Γljk(0) = 0.

Proof. See [12]. �

The local coordinates in the theorem are called normal coordinates

at p. In these coordinates geodesics through p correspond to rays

through the origin. Further, by (3) the metric and its first derivatives

have a simple form at 0. This fact is often exploited when proving an

identity where both sides are invariantly defined, and thus it is enough

to verify the identity in some suitable coordinate system. The proper-

ties given in (3) sometimes simplify these local coordinate computations

dramatically.

Finally, we will need the fact that when switching to polar coordi-

nates in a normal coordinate system, the metric has special form in a

full neighborhood of 0 instead of just at the origin.

Theorem. (Polar normal coordinates) Let (U,ϕ) be normal co-

ordinates at p. If (r, θ) are the corresponding polar coordinates (thus

r(q) = |ϕ(q)| > 0 and θ(q) is the corresponding direction in Sn−1), then
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the metric has the form

(gjk(r, θ)) =

(
1 0

0 gαβ(r, θ)

)
.

This means that |∂/∂r| = 1, 〈∂/∂r, ∂/∂θ〉 = 0, and r(q) = d(p, q).





CHAPTER 3

Limiting Carleman weights

In this chapter we will establish a starting point for solving some

of the problems mentioned in the introduction. The approach taken

here is to construct special solutions to the Schrödinger equation (or

special harmonic functions if there is no potential) in (M, g), in such a

way that the products of these special solutions are dense in L1(M).

The exact form of the special solutions is motivated by develop-

ments in Rn, where harmonic exponential functions eρ·x with ρ ∈ Cn

and ρ · ρ = 0 have been successful in the solution of inverse problems.

On a Riemannian manifold there is no immediate analog for the linear

phase function ρ · x (one can always find such a function in local coor-

dinates, but not globally in general). We will instead look for general

phase functions ϕ which are expected to have desirable properties for

the purposes of constructing special solutions. Such phase functions

will be called limiting Carleman weights (LCWs).

The main result is a geometric characterization of those manifolds

which admit LCWs. It makes use of the crucial fact that the existence

of LCWs only depends on the conformal class of the manifold. The

result is stated in terms of the existence of a parallel vector field in

some conformal manifold.

Theorem 3.1. (Manifolds which admit LCWs) Let (M, g) be a

simply connected open Riemannian manifold. Then (M, g) admits an

LCW iff some conformal multiple of g admits a parallel unit vector

field.

Intuitively, the geometric condition means that up to a conformal

factor there has to be a Euclidean direction on the manifold.

At this point we also mention a few open questions related to the

theorem. The notation will be explained below. The first question asks

to show that in dimensions n ≥ 3 most metrics do not admit LCWs

even locally (in fact, it would be interesting to prove the existence of

even one metric which does not admit LCWs).

43
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Question 3.1. (Counterexamples) If M is a smooth manifold of

dimension n ≥ 3 and if p ∈M , show that a generic metric near p does

not admit an LCW. 1

We will show later that if ϕ is an LCW, then one has a suitable

Carleman estimate for the conjugated Laplace-Beltrami operators P±ϕ.

The next question is asking for a converse.

Question 3.2. (Carleman estimates imply LCW) If (M, g) is an

open manifold and ϕ is such that for any M1 ⊂⊂M there are C0, h0 >

0 for which

h‖u‖L2(M1) ≤ C‖P±ϕu‖L2(M1), u ∈ C∞c (M int
1 ), 0 < h < h0,

then ϕ is an LCW. 2

The last question asks to find an analog in dimensions n ≥ 3 of the

Carleman weights with critical points which have recently been very

successful in 2D inverse problems.

Question 3.3. Find an analog in dimensions n ≥ 3 of Bukhgeim-

type weights ϕ in 2D manifolds which satisfy a Carleman estimate of

the type h3/2‖u‖ ≤ C‖P±ϕu‖ for u ∈ C∞c (M int) and 0 < h < h0.

In this chapter we will mostly follow [4, Section 2].

3.1. Motivation and definition

Let (M, g) be a compact Riemannian manifold with boundary, and

let V1, V2 ∈ C∞(M). As always, we assume that the Dirichlet problems

for −∆g + Vj in M are uniquely solvable, so that the DN maps Λg,Vj

are well defined. Assume that Λg,V1 = Λg,V2 , that is, the two potentials

V1 and V2 result in identical boundary measurements. Then we know

that ∫
M

(V1 − V2)u1u2 dV = 0

for any solutions uj ∈ H1(M) which satisfy (−∆g + Vj)uj = 0 in M .

To solve the inverse problem of proving that V1 = V2, it is therefore

enough to show that the set of products of solutions

{u1u2 ; uj ∈ H1(M) and (−∆g + Vj)uj = 0 in M}
1A positive answer to this question was recently given in [14].
2A positive answer was outlined in lectures of Dos Santos Ferreira [3].
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is dense in L1(M).

In Euclidean space in dimensions n ≥ 3, the density of solutions

can be proved based on harmonic complex exponentials. The following

argument is from [19] and is explained in detail in [17, Chapter 3].

Motivation. Let (M, g) = (Ω, e) where Ω is a bounded open sub-

set of Rn with C∞ boundary. In this setting we have special harmonic

functions

(3.1) u0(x) = eρ·x, ρ ∈ Cn, ρ · ρ = 0.

Clearly ∆u0 = (ρ ·ρ)u0 = 0. By [19], if |ρ| is large there exist solutions

to Schrödinger equations which look like these harmonic exponentials

and have the form

u1 = eρ·x(a1 + r1),

u2 = e−ρ·x(a2 + r2),

where aj are certain explicit functions and rj are correction terms which

are small when |ρ| is large, in the sense that ‖rj‖L2(Ω) ≤ C/|ρ|. We

have chosen one solution with eρ·x and the other solution with e−ρ·x

so that the exponential factors will cancel in the product u1u2, thus

making it possible to take the limit as |ρ| → ∞ which will get rid of

the correction terms rj.

The density of products of solutions in this case can be proved as

follows. We fix ξ ∈ Rn and choose a1 = eix·ξ, a2 = 1. If n ≥ 3 then there

exists a family of complex vectors ρ with ρ · ρ = 0 and |ρ| → ∞ such

that solutions with the above properties can be constructed. To show

density of the set {u1u2} for solutions of this type, we take V ∈ L∞(Ω)

and assume that ∫
Ω

V u1u2 dx = 0

for all u1 and u2 as above. Then∫
Ω

V (eix·ξ + r1 + eix·ξr2 + r1r2) dx = 0.

By the L2 estimates for rj we may take the limit as |ρ| → ∞, which

will imply that
∫

Ω
V eix·ξ dx = 0. Since this is true for any fixed ξ ∈ Rn,

it follows from the uniqueness of the Fourier transform that V = 0 as

required.
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After having discussed the proof in the Euclidean case, we move on

to the setting on Riemannian manifolds and try to see if a similar argu-

ment could be achieved. If (M, g) is a compact Riemannian manifold

with boundary, we first seek approximate solutions satisfying ∆gu0 ≈ 0

(in some sense) having the form

u0 = e−ϕ/hm.

Here ϕ is assumed to be a smooth real valued function on M , h > 0

will be a small parameter, and m ∈ C∞(M) is some complex function.

In the Euclidean case this corresponds to (3.1) by taking h = 1/|ρ|,
ϕ(x) = −Re(ρ/|ρ|) · x, and m(x) = eIm(ρ)·x.

Loosely speaking, ϕ will be a limiting Carleman weight if such ap-

proximate solutions with weight ±ϕ can always be converted into exact

solutions of ∆gu = 0 (we can forget the potential V at this point). More

precisely, we would like that

(3.2)


for any function u0 = e∓ϕ/hm ∈ C∞(M) there is a

solution u = e∓ϕ/h(m+ r) of ∆gu = 0 in M such that

‖r‖L2(M) ≤ Ch‖e±ϕ/h∆gu0‖L2(M) for h small.

To find conditions on ϕ which would guarantee that this is possible,

we introduce the conjugated Laplace-Beltrami operator

Pϕ := eϕ/h(−h2∆g)e
−ϕ/h.

Note that if u = e∓ϕ/h(m+ r), then

∆gu = 0 ⇔ e±ϕ/h(−h2∆g)e
∓ϕ/h(m+ r) = 0

⇔ P±ϕr = −P±ϕm.

Thus (3.2) would follow if for any f ∈ L2(M) there is a function v

satisfying for h small

P±ϕv = f in M,

h‖v‖L2(M) ≤ C‖f‖L2(M).

One approach for proving existence of solutions to the last equation,

or more generally an inhomogeneous equation Tv = f , is to prove

uniqueness of solutions to the homogeneous adjoint equation T ∗v = 0.

This follows the general principle{
T ∗ injective

range of T ∗ closed
=⇒ T surjective.
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Exercise 3.1. Find out why this principle holds for m×n matrices,

for operators T = Id +K where K is a compact operator on a Hilbert

space, or for bounded operators T between two Hilbert spaces.

Since P ∗±ϕ = P∓ϕ, injectivity and closed range for the adjoint oper-

ator would be a consequence of the a priori estimate

(3.3) h‖u‖L2(M) ≤ C‖P±ϕu‖L2(M), u ∈ C∞c (M int), h small.

This is called a Carleman estimate (that is, a norm estimate with

exponential weights depending on a parameter). Estimates of this type

have turned out to be very useful in unique continuation for solutions

of partial differential equations, control theory, and inverse problems.

We will look for conditions on ϕ which would imply the Carleman

estimate (3.3). The following decomposition of Pϕ into its self-adjoint

part A and skew-adjoint part iB will be useful.

Lemma 3.2. Pϕ = A + iB where A and B are the formally self-

adjoint operators (in the L2(M) inner product)

A := −h2∆g − |dϕ|2,

B :=
h

i
(2〈dϕ, d · 〉+ ∆gϕ) .

Proof. The quickest way to see this is a computation in local

coordinates. We write Dj = −i∂xj , and note that

eϕ/hhDje
−ϕ/h = hDj + iϕxj .

Then

Pϕu = eϕ/h(−h2∆g)e
−ϕ/hu

= |g|−1/2eϕ/hhDj(e
−ϕ/h|g|1/2gjkeϕ/hhDk(e

−ϕ/hu))

= |g|−1/2(hDj + iϕxj)|g|1/2gjk(hDk + iϕxk)u)

= −h2∆gu+ hgjkϕxjuxk + h|g|−1/2∂j(|g|1/2gjkϕxku)− gjkϕxjϕxku
= −h2∆gu+ h [2〈dϕ, du〉+ (∆gϕ)u]− |dϕ|2u.

The result follows immediately upon checking that A and B are for-

mally self-adjoint. �

Exercise 3.2. Check that A and B are formally self-adjoint.

Next we give a basic computation in the proof of a Carleman esti-

mate such as (3.3), evaluating the square of the right hand side.
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Lemma 3.3. If u ∈ C∞c (M int) then

‖Pϕu‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u).

Proof. Since Pϕ = A+ iB,

‖Pϕu‖2 = (Pϕu, Pϕu) = ((A+ iB)u, (A+ iB)u)

= (Au,Au) + i(Bu,Au)− i(Au,Bu) + (Bu,Bu)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u).

We used that A and B are formally self-adjoint. �

Thus ‖Pϕu‖2 can be written as the sum of two nonnegative terms

‖Au‖2 and ‖Bu‖2 and a third term which involves the commutator

[A,B] := AB − BA. The only negative contribution may come from

the commutator term. Therefore, a positivity condition for i[A,B]

would be helpful for proving the Carleman estimate (3.3) for Pϕ. We

will state such a positivity condition on the level of principal symbols.

Lemma 3.4. The principal symbols of A and B are

a(x, ξ) := |ξ|2 − |dϕ|2,
b(x, ξ) := 2〈dϕ, ξ〉.

The principal symbol of i[A,B] is the Poisson bracket h{a, b}.

Proof. The principal symbol of A is obtained by writing A in some

local coordinates and by looking at the symbol of the corresponding

operator in Rn. But in local coordinates

A = gjkhDjhDk − gjkϕxjϕxk + h
[
|g|−1/2Dj(|g|1/2gjk)Dk

]
.

The last term is lower order, hence does not affect the principal symbol.

The symbol of gjkhDjhDk−gjkϕxjϕxk is gjkξjξk−gjkϕxjϕxk , so we may

take the invariantly defined function a(x, ξ) := |ξ|2 − |dϕ|2 on T ∗M as

the principal symbol. A similar argument works for B, and the claim

for i[A,B] is a general fact. �

Given this information, the positivity condition that we will require

of i[A,B] is the following condition for the principal symbol:

{a, b} ≥ 0 when a = b = 0.

More precisely, we ask that {a, b}(x, ξ) ≥ 0 for any (x, ξ) ∈ T ∗M for

which a(x, ξ) = b(x, ξ) = 0. The idea is that in Lemma 3.3 one has

the nonnegative terms ‖Au‖2 and ‖Bu‖2, and if either of these is large
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then it may cancel a negative contribution from the commutator term.

On the level of symbols, one therefore only needs positivity of {a, b}
when the principal symbols of A and B vanish.

Recall that one wants the estimate (3.3) also for P−ϕ. Changing ϕ

to −ϕ in Lemma 3.2, we see that P−ϕ = A − iB. As in Lemma 3.3

one then asks a positivity condition for i[A,−B], which has principal

symbol −{a, b}. Thus, we also require that

{a, b} ≤ 0 when a = b = 0.

Combining the above conditions for {a, b}, we have finally arrived

at the definition of limiting Carleman weights. The definition is most

naturally stated on open manifolds, and it includes the useful additional

condition that ϕ should have nonvanishing gradient.

Definition. Let (M, g) be an open Riemannian manifold. We say

that a smooth real valued function ϕ in M is a limiting Carleman

weight (LCW) if dϕ 6= 0 in M and

{a, b} = 0 when a = b = 0.

Example. Let (M, g) = (Ω, e) where Ω is an open set in Rn. We

will verify that the linear function ϕ(x) = α · x, where α ∈ Rn is a

nonzero vector, is an LCW. Indeed, one has ∇ϕ = α and the principal

symbols are

a(x, ξ) = |ξ|2 − |α|2,
b(x, ξ) = 2α · ξ.

Since a and b are independent of x, the Poisson bracket is

{a, b} = ∇ξa · ∇xb−∇xa · ∇ξb ≡ 0.

Thus ϕ is an LCW.

Exercise 3.3. If (M, g) = (Ω, e) and 0 /∈ Ω, verify that ϕ(x) =

log |x| and ϕ(x) = α·x
|x|2 are LCWs. Here α ∈ Rn is a fixed vector.

3.2. Characterization

In the previous section, after a long motivation we ended up with a

definition of LCWs involving a rather abstract vanishing condition for a

certain Poisson bracket. Here we give a geometric meaning to this con-

dition, and also prove Theorem 3.1 which characterizes all Riemannian

manifolds which admit LCWs. We recall the statement.
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Theorem 3.1. (Manifolds which admit LCWs) Let (M, g) be a

simply connected open Riemannian manifold. Then (M, g) admits an

LCW iff some conformal multiple of g admits a parallel unit vector

field.

Recall that a vector field X is parallel if DVX = 0 for any vector

field V . Also recall that a manifold is simply connected if it is connected

and if every closed curve is homotopic to a point. An explanation of

the geometric condition, including examples of manifolds which satisfy

it, is given in the next section.

We now begin the proof of Theorem 3.1. Let (M, g) be an open

manifold. Recall that ϕ ∈ C∞(M ; R) is an LCW if dϕ 6= 0 in M and

{a, b} = 0 when a = b = 0.

Here a(x, ξ) = |ξ|2− |∇ϕ|2 and b(x, ξ) = 2〈dϕ, ξ〉 are smooth functions

in T ∗M . The first step is to find an expression for the Poisson bracket

{a, b}, defined in local coordinates by {a, b} := ∇ξa · ∇xb−∇xa · ∇ξb.

Motivation. We first compute the Poisson bracket in Rn. Then

a(x, ξ) = |ξ|2 − |∇ϕ|2 and b(x, ξ) = 2∇ϕ · ξ, and writing ϕ′′ for the

Hessian matrix (ϕxjxk)
n
j,k=1 we have

{a, b} = ∇ξa · ∇xb−∇xa · ∇ξb

= 2ξ · 2ϕ′′ξ − (−2ϕ′′∇ϕ) · 2∇ϕ
= 4ϕ′′ξ · ξ + 4ϕ′′∇ϕ · ∇ϕ.

A computation in normal coordinates will show that a similar ex-

pression, now involving the covariant Hessian, holds on a Riemannian

manifold.

Lemma 3.5. (Expression for Poisson bracket) The Poisson bracket

is given by

{a, b}(x, ξ) = 4D2ϕ(ξ], ξ]) + 4D2ϕ(∇ϕ,∇ϕ).

Proof. Both sides are invariantly defined functions on T ∗M , so

it is enough to check the identity in some local coordinates at a given

point. Fix p ∈ M , let x be normal coordinates centered at p, and let

(x, ξ) be the associated local coordinates in T ∗M near p. Then

a(x, ξ) = gjkξjξk − gjkϕxjϕxk ,
b(x, ξ) = 2gjkϕxjξk.
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Using that gjk|p = δjk and ∂lg
jk|p = Γljk|p = 0, we have

{a, b}(x, ξ)|p =
n∑
l=1

[∂ξla∂xlb− ∂xla∂ξlb]
∣∣∣
p

=
n∑
l=1

[
(2gjlξl)(2g

jkϕxjxlξk)− (−2gjkϕxjxlϕxk)(2g
jlϕxj)

] ∣∣∣
p

=
n∑

j,l=1

[
4ϕxjxlξjξl + 4ϕxjxlϕxjϕxl

] ∣∣∣
p

= (4D2ϕ(ξ], ξ]) + 4D2ϕ(∇ϕ,∇ϕ))|p
since D2ϕ|p = ϕxjxldx

j ⊗ dxl|p. �

This immediately implies a condition for LCWs which is easier to

work with than the original one.

Corollary 3.6. ϕ is an LCW iff dϕ 6= 0 in M and

D2ϕ(X,X) +D2ϕ(∇ϕ,∇ϕ) = 0 when |X| = |∇ϕ| and 〈X,∇ϕ〉 = 0.

We can now give a full characterization of LCWs in two dimensions.

To do this, recall that the trace of a 2-tensor S on an n-dimensional

manifold (N, g) is (analogously to the trace of an n×n matrix) defined

by

Tr(S)|p :=
n∑
j=1

S(ej, ej)

where {e1, . . . , en} is any orthonormal basis of TpN . The trace of the

Hessian is just the Laplace-Beltrami operator, as may be seen by a

computation in normal coordinates at p:

Tr(D2ϕ)|p =
n∑
j=1

D2ϕ(∂j, ∂j)|p =
n∑
j=1

ϕxjxj |p = ∆gϕ|p.

Proposition 3.7. (LCWs in 2D) The LCWs in a 2D manifold

(M, g) are exactly the harmonic functions with nonvanishing differen-

tial.

Proof. If |X| = |∇ϕ| and 〈X,∇ϕ〉 = 0, then {X/|∇ϕ|,∇ϕ/|∇ϕ|}
is an orthonormal basis of the tangent space. Then

D2ϕ(X,X) +D2ϕ(∇ϕ,∇ϕ) = |∇ϕ|2Tr(D2ϕ) = |∇ϕ|2∆gϕ.

By Corollary 3.6, ϕ is an LCW iff ∆gϕ = 0 and dϕ 6= 0. �
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After having characterized the situation in two dimensions, we move

on to the case n ≥ 3. The crucial fact here is that the existence of

LCWs is a conformally invariant condition.

Proposition 3.8. (Existence of LCWs only depends on conformal

class) If ϕ is an LCW in (M, g), then ϕ is an LCW in (M, cg) for any

smooth positive function c.

Proof. Suppose ϕ is an LCW in (M, g), and let g̃ = cg. Then the

symbols ã and b̃ for the metric g̃ are

ã = g̃jkξjξk − g̃jkϕxjϕxk = c−1(gjkξjξk − gjkϕxjϕxk) = c−1a,

b̃ = 2g̃jkϕxjξk = 2c−1gjkϕxjξk = c−1b.

Since c−1 does not depend on ξ, it follows that

{ã, b̃} = {c−1a, c−1b} = c−1∇ξa · ∇x(c
−1b)− c−1∇x(c

−1a) · ∇ξb

= c−2{a, b}+ c−1b{a, c−1}+ c−1a{c−1, b}.

Suppose that ã = b̃ = 0. Then a = b = 0, and using that ϕ is an LCW

it follows that {a, b} = 0. Consequently {ã, b̃} = 0 when ã = b̃ = 0,

showing that ϕ is an LCW in (M, g̃). �

At this point we record a lemma which expresses relations between

the Hessian and the covariant derivative.

Lemma 3.9. If ϕ ∈ C∞(M) then

D2ϕ(X, Y ) = 〈DX∇ϕ, Y 〉,

D2ϕ(X,∇ϕ) = 〈DX∇ϕ,∇ϕ〉 =
1

2
X(|∇ϕ|2),

D2ϕ(γ̇(t), γ̇(t)) =
d2

dt2
ϕ(γ(t))

for any X, Y and for any geodesic γ.

Proof. The first identity follows from a computation in normal

coordinates. The second identity follows from the first one and the

metric property of D. The third identity holds since

d2

dt2
ϕ(γ(t)) =

d

dt
〈∇ϕ(γ(t)), γ̇(t)〉 = 〈Dγ̇(t)∇ϕ(γ(t)), γ̇(t)〉

= D2ϕ(γ̇(t), γ̇(t))

by the first identity. Here we used that Dγ̇(t)γ̇(t) = 0 since γ is a

geodesic. �
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Using the second identity in the previous lemma, we now observe

that if ϕ is an LCW and additionally |∇ϕ| = 1, then the second term

in Corollary 3.6 vanishes:

D2ϕ(∇ϕ,∇ϕ) =
1

2
∇ϕ(|∇ϕ|2) = 0.

A smooth function which satisfies |∇ϕ| = 1 is called a distance function

(since any such function is locally given by the Riemannian distance to

a point or submanifold, but we will not need this fact). If one is given

an LCW ϕ in (M, g), one can always reduce to the case where the LCW

is a distance function by using the following conformal transformation.

Lemma 3.10. (Conformal normalization) If ϕ is a smooth function

in (M, g) and if g̃ = |∇ϕ|2g, then |∇g̃ϕ|g̃ = 1.

Proof. |∇g̃ϕ|2g̃ = g̃jkϕxjϕxk = |∇ϕ|−2gjkϕxjϕxk = 1. �

We have an important characterization of LCWs which are also

distance functions.

Lemma 3.11. (LCWs which are distance functions) Let ϕ ∈ C∞(M)

and |∇ϕ| = 1. The following conditions are equivalent:

(1) ϕ is an LCW.

(2) D2ϕ ≡ 0.

(3) ∇ϕ is parallel.

(4) If p ∈M and if v is in the domain of expp, then

ϕ(expp(v)) = ϕ(p) + 〈∇ϕ(p), v〉.

Proof. Since |∇ϕ| = 1 we have D2ϕ(∇ϕ,∇ϕ) = 0. Thus by

Corollary 3.6, ϕ is an LCW iff

D2ϕ(X,X) = 0 when |X| = 1 and 〈X,∇ϕ〉 = 0.

Since D2ϕ is bilinear we may drop the condition |X| = 1, and the

condition for LCW becomes

D2ϕ(X,X) = 0 when 〈X,∇ϕ〉 = 0.

(1) =⇒ (2): Suppose ϕ is an LCW. Fix p ∈ M and choose an

orthonormal basis {e1, . . . , en} of TpM such that e1 = ∇ϕ. Then, by

the above discussion,

D2ϕ(e1, e1) = 0,

D2ϕ(ej, ek) = 0 for 2 ≤ j, k ≤ n.
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By Lemma 3.9 we also have D2ϕ(X,∇ϕ) = 1
2
X(|∇ϕ|2) = 0 for any X,

therefore

D2ϕ(ej, e1) = 0 for 2 ≤ j ≤ n.

Since D2ϕ is bilinear and symmetric, we obtain D2ϕ ≡ 0.

(2) =⇒ (1): This is immediate.

(2) ⇐⇒ (3): Follows from D2ϕ(X, Y ) = 〈DX∇ϕ, Y 〉.
(2) ⇐⇒ (4): Let γv(t) = expp(tv). Then

d

dt
ϕ(γv(t)) = 〈∇ϕ(γv(t)), γ̇v(t)〉,

d2

dt2
ϕ(γv(t)) = D2ϕ(γ̇v(t), γ̇v(t)).

If D2ϕ ≡ 0 then the second derivative of ϕ(γv(t)) vanishes, therefore

ϕ(γv(t)) = a0 + b0t for some real constants a0, b0. Evaluating ϕ(γv(t))

and its derivative at t = 0 gives

ϕ(expp(tv)) = ϕ(p) + 〈∇ϕ(p), v〉t.

Conversely, if the last identity is valid then the second derivative of

ϕ(γv(t)) vanishes, which implies D2ϕ ≡ 0. �

Remarks. 1. The condition (4) indicates that LCWs which

are also distance functions (normalized so that ϕ(p) = 0) are

the analog on Riemannian manifolds of the linear Carleman

weights in Euclidean space.

2. If ϕ is an LCW and a distance function, the above lemma

shows that the Poisson bracket {a, b} vanishes on all of T ∗M

instead of just on the submanifold where a = b = 0.

We have now established all the statements needed for the proof

of Theorem 3.1, except for the fact that any parallel vector field in a

simply connected manifold is a gradient field. Leaving this fact to the

next section, we give the proof of the main theorem.

Proof of Theorem 3.1. Let (M, g) be simply connected and

open.

” =⇒ ”: Suppose ϕ is an LCW in (M, g). By conformal invariance

(Lemma 3.8) we know that ϕ is an LCW in (M, g̃) where g̃ = |∇ϕ|2g.

Lemma 3.10 shows that ϕ is also a distance function in (M, g̃). Then

Lemma 3.11 applies, and we see that ∇g̃ϕ is a unit parallel vector field

in (M, g̃).
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” ⇐= ”: Assume that X is a unit parallel vector field in (M, cg)

where c > 0. Since M is simply connected, the fact mentioned just

before this proof shows that X = ∇cgϕ for some smooth function ϕ.

Since ∇cgϕ is parallel and |∇cgϕ|cg = 1, Lemma 3.11 implies that ϕ is

an LCW in (M, cg). By conformal invariance ϕ is then an LCW also

in (M, g). �

3.3. Geometric interpretation

The geometric meaning of having a parallel unit vector field is given

in the following result.

Lemma 3.12. (Parallel field ⇔ product structure) Let X be a unit

parallel vector field in (M, g). Near any point of M there exist local

coordinates x = (x1, x
′) such that X = ∂1 and

g(x1, x
′) =

(
1 0

0 g0(x′)

)
, for some metric g0 in the x′ variables.

Conversely, if g is of this form then ∂1 is a unit parallel vector field.

This says that the existence of a unit parallel vector field X implies

that M is locally isometric to a subset of (R, e) × (M0, g0) for some

(n− 1)-dimensional manifold (M0, g0). One can think of the direction

of X as being a Euclidean direction on the manifold.

Note that any parallel vector field X has constant length on each

component of M , since V (|X|2) = 2〈DVX,X〉 = 0 for any vector field

V . Thus the existence of any nontrivial parallel vector field implies a

product structure.

Theorem 3.1 now says that (M, g) admits an LCW iff up to a con-

formal factor there is a Euclidean direction on the manifold. More

precisely:

Lemma 3.13. (LCWs in local coordinates) Let ϕ be an LCW in

(M, g). Near any point of M there are local coordinates x = (x1, x
′)

such that in these coordinates ϕ(x) = x1 and

g(x1, x
′) = c(x)

(
1 0

0 g0(x′)

)
where c is a positive function and g0 is some metric in the x′ variables.

Conversely, any metric of this form has the LCW ϕ(x) = x1.

Exercise 3.4. Prove this lemma.
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Example. Manifolds which admit LCWs include the following:

1. Euclidean space Rn since any constant vector field is parallel,

2. all open subsets of the model spaces Rn, Sn r {p0}, and Hn since

these are conformal to Euclidean space,

3. more general manifolds locally conformal to Rn, such as symmetric

spaces in 3D, admit LCWs locally,

4. all 2D manifolds admit LCWs at least locally by Proposition 3.7,

5. (Ω, g) admits an LCW if Ω ⊆ Rn and if in some coordinates x =

(x1, x
′) the metric g has the form

g(x1, x
′) = c(x)

(
1 0

0 g0(x′)

)
for some positive function c and some (n−1)-dimensional metric g0.

The rest of this section is devoted to the proofs of Lemma 3.12 and

the fact which was used in the proof of Theorem 3.1. We start with

the latter.

Lemma 3.14. If M is a manifold with H1
dR(M) = {0}, then any

parallel unit vector field on M is a gradient field.

Proof. Let X be a parallel unit vector field on M . We choose

ω = X[ to be the 1-form corresponding to X. It is enough to prove

that dω = 0, since then the condition on the first de Rham coho-

mology group implies that ω = dϕ for some smooth function ϕ and

consequently X = (dϕ)] = ∇ϕ.

The fact that dω = 0 follows from the general identity

d(X[)(Y, Z) = 〈DYX,Z〉 − 〈DZX, Y 〉

since DVX = 0 for any V . �

Exercise 3.5. Show the identity used in the proof.

To prove Lemma 3.12 we need a version of the Frobenius theorem.

For this purpose we introduce some terminology, see [11, Section 14]

for more details. A k-plane field on a manifold M is a rule Γ which

associates to each point p in M a k-dimensional subspace Γp of TpM ,

such that Γp varies smoothly with p. A vector field X on M is called a

section of Γ if X(p) ∈ Γp for any p. A k-plane field Γ is called involutive

if for any V,W which are sections of Γ, also the Lie bracket [V,W ] is a

section of Γ.



3.3. GEOMETRIC INTERPRETATION 57

Theorem. (Frobenius) If Γ is an involutive k-plane field, then

through any point p in M there is an integral manifold S of Γ (that

is, S is a k-dimensional submanifold of M with Γ|S = TS).

The other tool that is needed is a special local coordinate system

called semigeodesic coordinates. The usual geodesic normal coordinates

are obtained by following geodesic rays starting at a given point. Semi-

geodesic coordinates are instead obtained by following geodesics which

are normal to a given hypersurface S. On manifolds with boundary,

semigeodesic coordinates where S is part of the boundary are called

boundary normal coordinates.

Lemma 3.15. (Semigeodesic coordinates) Let p ∈M and let S be a

hypersurface through p. There is a chart (U, x) at p such that S ∩U =

{x1 = 0}, the curves x1 7→ (x1, x
′) correspond to normal geodesics

starting from S, and the metric has the form

g(x1, x
′) =

(
1 0

0 g0(x1, x
′)

)
.

The inverse of the map (x1, x
′) 7→ expq(x′)(x1N(q(x′))) gives such a

chart, where x′ 7→ q(x′) is a parametrization of S near p and N is a

unit normal vector field of S.

Exercise 3.6. Prove this lemma.

Proof of Lemma 3.12. ” =⇒ ” Let X be unit parallel, and let

Γ be the (n − 1)-plane field consisting of vectors orthogonal to X. If

V,W are vector fields orthogonal to X then

〈[V,W ], X〉 = 〈DVW −DWV,X〉 = V 〈W,X〉 −W 〈V,X〉 = 0

using the symmetry and metric property of the Levi-Civita connection

and the fact that X is parallel. This shows that Γ is an involutive

(n− 1)-plane field.

Fix p ∈M , and use the Frobenius theorem to find a hypersurface S

through p such that X is normal to S. If x′ 7→ q(x′) parametrizes S near

p, then (x1, x
′) 7→ expq(x′)(x1X(q(x′))) gives semigeodesic coordinates

near p such that ∂1 is the tangent vector of a normal geodesic to S and

g(x1, x
′) =

(
1 0

0 g0(x1, x
′)

)
.
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Now the integral curves of X are geodesics (if γ̇(t) = X(γ(t)) then

Dγ̇(t)γ̇(t) = Dγ̇(t)X(γ(t)) = 0), which shows that X = ∂1. It remains

to prove that g0(x1, x
′) is independent of x1. But for j, k ≥ 2 we have

∂1gjk = ∂1〈∂j, ∂k〉 = 〈D∂1∂j, ∂k〉+ 〈∂j, D∂1∂k〉
= 〈D∂j∂1, ∂k〉+ 〈∂j, D∂k∂1〉 = 0

since D∂1∂l −D∂l∂1 = [∂1, ∂l] = 0 and since ∂1 = X is parallel.

”⇐= ” Exercise. �

Exercise 3.7. Prove the converse direction in Lemma 3.12.



CHAPTER 4

Carleman estimates

In the previous chapter we introduced limiting Carleman weights

(LCWs), motivated by the possibility of constructing special solutions

to the Schrödinger equation (−∆g + V )u = 0 in M having the form

u = e±ϕ/h(a+ r)

where ϕ is an LCW, h > 0 is a small parameter, and the correction

term r converges to zero as h → 0. The arguments involved solving

inhomogeneous equations of the type

(4.1) e±ϕ/h(−∆g + V )e∓ϕ/hr = f in M

with the norm estimate

‖r‖L2(M) ≤ Ch‖f‖L2(M), 0 < h < h0.

We then gave a definition of LCWs based on an abstract condition

on the vanishing of a Poisson bracket and proved that on a simply

connected open manifold (M, g), by Theorem 3.1 and Lemma 3.13,

ϕ is an LCW in (M, g)

⇐⇒ ∇c̃gϕ is unit parallel in (M, c̃g) for some c̃ > 0

=⇒ locally in some coordinates ϕ(x) = x1 and g = c(e⊕ g0).

On the last line, the notation means that c−1g is the product of the

Euclidean metric e on R and some (n− 1)-dimensional metric g0.

In this chapter we will show that the existence of an LCW indeed

implies the solvability of the inhomogeneous equation (4.1) with the

right norm estimates. We will prove this under the extra assumption

that the metric has the product structure g = c(e⊕g0) globally instead

of just locally. Following [10], this assumption makes it possible to

use Fourier analysis to write down the solutions in a rather explicit

way. See [4, Section 4] for a different (though less explicit) proof based

on integration by parts arguments as in Section 3.1, which does not

require the extra assumption on global structure of g.

59
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4.1. Motivation and main theorem

As usual, we will first consider solvability of the inhomogeneous

equation in the Euclidean case. Here and below we will consider a

large parameter τ = 1/h instead of a small parameter. This is just a

matter of notation, and this choice will be slightly more transparent

(also the Fourier analysis proof will allow us to avoid semiclassical

symbol calculus for which a small parameter would be more natural).

Motivation. Consider the analog of the equation (4.1) in Rn with

the LCW ϕ(x) = x1 and with V = 0,

eτx1(−∆)e−τx1u = f in Rn.

Noting that eτx1De−τx1 = D + iτe1 where D = −i∇, we compute

eτx1(−∆)e−τx1 = (D+iτe1)2 = −∆+2τ∂1−τ 2. The equation becomes

(−∆ + 2τ∂1 − τ 2)u = f in Rn.

The operator on the left has constant coefficients, and one can try to

find a solution by taking the Fourier transform of both sides. Since

(Dju)̂ (ξ) = ξjû(ξ), this gives the equation

(|ξ|2 + 2iτξ1 − τ 2)û(ξ) = f̂(ξ) in Rn.

Thus, one formally obtains the solution

u = F−1

{
1

p(ξ)
f̂(ξ)

}
where p(ξ) := |ξ|2 − τ 2 + 2iτξ1. The problem is that the symbol p(ξ)

has zeros, and it is not immediately obvious if one can divide by p(ξ).

In fact the zero set of the symbol is a codimension 2 manifold,

p−1(0) = {ξ ∈ Rn ; |ξ| = |τ |, ξ1 = 0}.

It was shown in [19] after a careful analysis that one can indeed justify

the division by p(ξ) if the functions are in certain weighted L2 spaces.

Define for δ ∈ R the space

L2
δ(Rn) := {f ∈ L2

loc(Rn) ; (1 + |x|2)δ/2f ∈ L2(Rn)}.

The result of [19] states that if −1 < δ < 0, then for any f ∈ L2
δ+1(Rn)

this argument gives a unique solution u ∈ L2
δ(Rn) with the right norm

estimates.
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It turns out that a similar Fourier analysis argument will also work

in the Riemannian case if the metric is related to the product metric

on R×M0. One can then use the ordinary Fourier transform on R, but

on the transversal manifold M0 the Fourier transform is replaced by

eigenfunction expansions. Also, since the spectrum in the transversal

directions is discrete, it turns out we can easily avoid the problem of

dividing by zero just by imposing a harmless extra condition on the

large parameter τ .

In this chapter we will be working in a cylinder T := R×M0 with

metric g := c(e⊕ g0), where (M0, g0) is a compact (n− 1)-dimensional

manifold with boundary and c > 0 is a smooth positive function. We

will write points of T as (x1, x
′) where x1 is the Euclidean coordinate

on R and x′ are local coordinates on M0. Thus g has the form

g(x1, x
′) = c(x)

(
1 0

0 g0(x′)

)
.

Note that these coordinates and the representation of the metric are

valid globally in x1 and locally in M0.

We denote by L2(T ) = L2(T, dVg) the natural L2 space on (T, g).

The local L2 space is

L2
loc(T ) := {f ; f ∈ L2([−R,R]×M0) for all R > 0}.

Writing 〈x〉 = (1 + |x|2)1/2, we define for any δ ∈ R the polynomially

weighted (in the x1 variable) spaces

L2
δ(T ) := {f ∈ L2

loc(T ) ; 〈x1〉δf ∈ L2(T )},
H1
δ (T ) := {f ∈ L2

δ(T ) ; df ∈ L2
δ(T )},

H1
δ,0(T ) := {f ∈ H1

δ (T ) ; f |R×M0 = 0}.

These have natural norms

‖f‖L2
δ(T ) := ‖〈x1〉δf‖L2(T ),

‖f‖H1
δ (T ) := ‖〈x1〉δf‖L2(T ) + ‖〈x1〉δdf‖L2(T ).

More precisely, L2
δ(T ) and H1

δ (T ) are the completions in the respective

norms of the space {f ∈ C∞(T ) ; f(x1, x
′) = 0 for |x1| large}, and

H1
δ,0(T ) is the completion of C∞c (T int) in the H1

δ (T ) norm.

If g has the special form given above, ϕ(x) = x1 is a natural LCW.

We denote by ∆g and ∆g0 the Laplace-Beltrami operators in (T, g) and

(M0, g0), respectively. The main result is as follows.
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Theorem 4.1. (Solvability and norm estimates) Let δ > 1/2, as-

sume that c(x1, x
′) = 1 for |x1| large, and let V be a complex function

in T with 〈x1〉2δV ∈ L∞(T ). There exist C0, τ0 > 0 such that whenever

|τ | ≥ τ0 and τ 2 /∈ Spec(−∆g0),

then for any f ∈ L2
δ(T ) there is a unique solution u ∈ H1

−δ,0(T ) of the

equation

eτx1(−∆g + V )e−τx1u = f in T.

This solution satisfies

‖u‖L2
−δ(T ) ≤

C0

|τ |
‖f‖L2

δ(T ),

‖u‖H1
−δ(T ) ≤ C0‖f‖L2

δ(T ).

Here Spec(−∆g0) is the discrete set of Dirichlet eigenvalues of −∆g0

in (M0, g0). The extra restriction τ 2 /∈ Spec(−∆g0) allows us to avoid

the problem of dividing by zero. One can always find a sequence of

τ ’s converging to plus or minus infinity which satisfies this restriction,

which is all that we will need for the applications to inverse problems.

Typically, if we consider an inverse problem in a compact manifold

(M, g) with boundary, Theorem 4.1 will be used by embedding (M, g) in

a cylinder (T, g) of the above type and then solving the inhomogeneous

equations in the larger manifold (T, g).

Let us formulate some open questions related to the above theorem

(some of these questions should be quite doable).

Question 4.1. Prove an analog of Theorem 4.1 without the restric-

tion τ 2 /∈ Spec(−∆g0) by using slightly different function spaces.

Question 4.2. (Existence of LCW implies global product structure)

Find conditions on a manifold (M, g) such that the existence of an LCW

on (M, g) would imply that (M, g) ⊂⊂ (T, g) for a cylinder as above.

Question 4.3. (Operators with first order terms) Prove an analog

of Theorem 4.1 when the operator −∆g+V is replaced by −∆g+2X+V

where X is a vector field on T with suitable regularity and decay.

4.2. Proof of the estimates

We begin the proof of Theorem 4.1. The first step is to observe

that it is enough to prove the result for c ≡ 1. Note that the metric in

T is of the form cg̃ where g̃ = e⊕ g0 is a product metric.
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Lemma 4.2. (Schrödinger equation under conformal scaling) If c is

a positive function in (M, g̃) and V is a function in M then

c
n+2
4 (−∆cg̃ + V )(c−

n−2
4 v) = (−∆g̃ + [cV − c

n+2
4 ∆g(c

−n−2
4 )])v.

Exercise 4.1. Prove the lemma.

Suppose now that Theorem 4.1 has been proved for the metric g̃ =

e⊕ g0. For the general case g = cg̃, we need to produce a solution of

eτx1(−∆cg̃ + V )e−τx1u = f in T.

We try u = c−
n−2
4 v for some v. By Lemma 4.2, it is enough to solve

eτx1(−∆g̃ + [cV − c
n+2
4 ∆g(c

−n−2
4 )])e−τx1v = c

n+2
4 f in T.

But since c = 1 for |x1| large, the potential Ṽ := cV − cn+2
4 ∆g(c

−n−2
4 )

has the same decay properties as V (that is, Ṽ ∈ 〈x1〉2δL∞(T )). The

right hand side f̃ := c
n+2
4 f is also in L2

δ(T ) like f , so Theorem 4.1

for g̃ implies the existence of a unique solution v. Since u = c−
n−2
4 v

the solution u belongs to the same function spaces and satisfies similar

estimates as v, and Theorem 4.1 follows in full generality.

From now on we will assume that c ≡ 1 and that we are working

in (T, g) where g = e⊕ g0, or in local coordinates

g(x1, x
′) =

(
1 0

0 g0(x′)

)
.

Since |g| only depends on x′, the Laplace-Beltrami operator splits as

∆g = ∂2
1 + ∆g0 .

Similarly, using that eτx1D1e
−τx1 = D1 + iτ , the conjugated Laplace-

Beltrami operator has the expression

eτx1(−∆g)e
−τx1 = (D1 + iτ)2 −∆g0

= −∂2
1 + 2τ∂1 − τ 2 −∆g0 .

Assuming that V = 0 for the moment, the equation that we need to

solve has now the form

(4.2) (−∂2
1 + 2τ∂1 − τ 2 −∆g0)u = f in T.

As mentioned above, we will employ eigenfunction expansions in

the manifold M0 to solve the equation. Let 0 < λ1 ≤ λ2 ≤ . . . be

the Dirichlet eigenvalues of the Laplace-Beltrami operator −∆g0 in
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(M0, g0), and let φl be the corresponding Dirichlet eigenfunctions so

that

−∆g0φl = λlφl in M, φl ∈ H1
0 (M0).

We assume that {φl}∞l=1 is an orthonormal basis of L2(M0). Then, if

f is a function on T such f(x1, · ) ∈ L2(M0) for almost every x1, we

define the partial Fourier coefficients

(4.3) f̃(x1, l) :=

∫
M0

f(x1, x
′)φl(x

′) dVg0(x
′).

One has the eigenfunction expansion

f(x1, x
′) =

∞∑
l=1

f̃(x1, l)φl(x
′)

with convergence in L2(M0) for almost every x1.

Motivation. Formally, the proof of Theorem 4.1 now proceeds as

follows. We consider eigenfunction expansions

u(x1, x
′) =

∞∑
l=1

ũ(x1, l)φl(x
′), f(x1, x

′) =
∞∑
l=1

f̃(x1, l)φl(x
′).

Inserting these expansions in (4.2) and using that−∆g0φl = λlφl results

in the following ODEs for the partial Fourier coefficients:

(4.4) (−∂2
1 + 2τ∂1 − τ 2 + λl)ũ( ·, l) = f̃( · , l) for all l.

The easiest way to prove uniqueness of solutions is to take Fourier

transforms in the x1 variable. If the ODEs (4.4) are satisfied with zero

right hand side, then with obvious notations

(ξ2
1 + 2iτξ1 − τ 2 + λl)û(ξ1, l) = 0 for all l.

Now if the symbol p(ξ1, l) := ξ2
1 +2iτξ1−τ 2 +λl would be zero, looking

at real and imaginary parts would imply ξ1 = 0 and τ 2 = λl. But

the condition τ 2 /∈ Spec(−∆g0) shows that this is not possible. Thus

p(ξ1, l) is nonvanishing, and we obtain û(ξ1, l) ≡ 0 and consequently

u ≡ 0. This proves uniqueness.

To show existence with the right norm estimates we observe that

−∂2
1 + 2τ∂1 − τ 2 = −(∂1 − τ)2, and we factor (4.4) as

(∂1 − τ −
√
λl)(∂1 − τ +

√
λl)ũ( · , l) = −f̃( · , l) for all l.

The Fourier coefficients of the solution u are then obtained from the

Fourier coefficients of f by solving two ODEs of first order.
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After this formal discussion, we will give the rigorous arguments

which lie behind these ideas. Let us begin with uniqueness.

Proposition 4.3. (Uniqueness for V = 0) Let u ∈ H1
δ,0(T ) for

some δ ∈ R, let τ 2 /∈ Spec(−∆g0), and assume that u satisfies

(−∂2
1 + 2τ∂1 − τ 2 −∆g0)u = 0 in T.

Then u = 0.

Proof. The condition that u is a solution implies that∫
T

u(−∂2
1 − 2τ∂1 − τ 2 −∆g0)ψ dVg = 0

for any ψ ∈ C∞c (T int). We make the choice ψ(x1, x
′) = χ(x1)φlj(x

′)

where χ ∈ C∞c (R) and φlj ∈ C∞c (M int
0 ) with φlj → φl in H1(M0) as

j → ∞. The last fact is possible since φl ∈ H1
0 (M0). Now g = e⊕ g0,

so we have for any w∫
T

w dVg =

∫ ∞
−∞

∫
M0

w(x1, x
′) dVg0(x

′) dx1.

Thus, with this choice of ψ we obtain that

(4.5)

∫ ∞
−∞

(∫
M0

u(x1, · )φlj dVg0
)

(−∂2
1 − 2τ∂1 − τ 2)χ(x1) dx1

+

∫ ∞
−∞

(∫
M0

u(x1, · )(−∆g0φlj) dVg0

)
χ(x1) dx1 = 0.

Note that u(x1, · ) ∈ H1
0 (M0) for almost every x1, because of the

assumption u ∈ H1
δ,0(T ) and the facts∫ ∞

−∞
〈x1〉2δ‖u(x1, · )‖2

L2(M0) dx1 = ‖u‖L2
δ(T ) <∞,∫ ∞

−∞
〈x1〉2δ‖∇g0u(x1, · )‖2

L2(M0) dx1 = ‖∇g0u‖L2
δ(T ) <∞.

Since −∆g0 is an isomorphism H1
0 (M0)→ H−1(M0), we have∫

M0

u(x1, · )φlj dVg0 → ũ(x1, l),∫
M0

u(x1, · )(−∆g0φlj) dVg0 → λlũ(x1, l)
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as j →∞ for any x1 such that u(x1, · ) ∈ H1
0 (M0). Dominated conver-

gence shows that we may take the limit in (4.5) and obtain∫ ∞
−∞

ũ(x1, l)(−∂2
1 − 2τ∂1 − τ 2 + λl)χ(x1) dx1 = 0 for all l.

The condition u ∈ L2
δ(T ) ensures that ũ( · , l) ∈ 〈 · 〉−δL2(R), and the

last identity implies

(−∂2
1 + 2τ∂1 − τ 2 + λl)ũ( · , l) = 0 for all l.

It only remains to take the Fourier transform in x1 (which can be done

in the sense of tempered distributions on R), which gives

(ξ2
1 + 2iτξ1 − τ 2 + λl)û( · , l) = 0 for all l.

The symbol ξ2
1 +2iτξ1−τ 2 +λl is never zero because τ 2 /∈ Spec(−∆g0).

Thus ũ( · , l) = 0 for all l, showing that u(x1, · ) = 0 for almost every

x1 and consequently u = 0. �

As discussed above, the existence of solutions will be established via

certain first order ODEs. The next result gives the required solvability

results and norm estimates. Here L2
δ(R) is the space defined via the

norm ‖f‖L2
δ(R) := ‖〈x〉δf‖L2(R), and S ′(R) is the space of tempered

distributions in R.

Proposition 4.4. (Solvability and norm estimates for an ODE)

Let a be a nonzero real number, and consider the equation

u′ − au = f in R.

For any f ∈ S ′(R) there is a unique solution u ∈ S ′(R). Writing

Saf := u, we have the mapping properties

Sa :L2
δ(R)→ L2

δ(R) for all δ ∈ R,
Sa :L1(R)→ L∞(R),

and the norm estimates

‖Saf‖L2
δ
≤ Cδ
|a|
‖f‖L2

δ
if |a| ≥ 1 and δ ∈ R,

‖Saf‖L2
−δ
≤ Cδ‖f‖L2

δ
if a 6= 0 and δ > 1/2,

‖Saf‖L∞ ≤ ‖f‖L1 .



4.2. PROOF OF THE ESTIMATES 67

Proof. Step 1. Let us first consider solvability in S ′(R). Taking

Fourier transforms, we have

u′ − au = f ⇐⇒ (iξ − a)û = f̂

⇐⇒ u = F−1{m(ξ)f̂(ξ)}

with m(ξ) := (iξ − a)−1. Since a 6= 0 the function m is smooth and its

derivatives are given by m(k)(ξ) = (−i)kk!(iξ − a)−k−1. Therefore

(4.6) ‖m(k)‖L∞ ≤ k!|a|−k−1, k = 0, 1, 2, . . . .

Thus m has bounded derivatives and v 7→ mv is continuous on S ′(R).

It follows that Saf := F−1{m(ξ)f̂(ξ)} produces for any f ∈ S ′(R) a

unique solution in S ′(R) to the given ODE.

Step 2. Let f ∈ L2
δ(R) where δ ∈ R. We will use the following

Sobolev space facts on R: if ‖m‖Wk,∞ :=
∑k

j=0‖m(j)‖L∞ then

‖v‖Hδ = ‖〈 · 〉δv̂‖L2 = ‖v̂‖L2
δ
,(4.7)

‖mv‖Hδ ≤ Cδ‖m‖Wk,∞‖v‖Hδ when k ≥ |δ|.(4.8)

Then for k ≥ |δ|

‖Saf‖L2
δ

= ‖F−1{Saf}‖Hδ = (2π)−1‖(mf̂)(− · )‖Hδ

≤ Cδ(2π)−1‖m‖Wk,∞‖f̂(− · )‖Hδ

= Cδ‖m‖Wk,∞‖f‖L2
δ
.

This proves that Sa maps L2
δ to itself. If additionally |a| ≥ 1, the

estimates (4.6) imply

‖Saf‖L2
δ
≤ Cδ
|a|
‖f‖L2

δ
.

Step 3. Let f ∈ L1(R), and let a > 0 (the case a < 0 is analogous).

To prove the L1 → L∞ bounds we will work on the spatial side and

solve the ODE by using the standard method of integrating factors. In

the sense of distributions

u′ − au = f ⇐⇒ u′e−at − aue−at = fe−at

⇐⇒ (ue−at)′ = fe−at.
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Integrating both sides from x to ∞ (here we use that a > 0 so e−at is

decreasing as t→∞), we define

u(x) := −
∫ ∞
x

f(t)e−a(t−x) dt.

Since |e−a(t−x)| ≤ 1 for t ≥ x, uniformly over a > 0, we see that

‖u‖L∞ ≤ ‖f‖L1 . Since u clearly solves the ODE we have u = Saf by

uniqueness of solutions. This shows the mapping property and norm

estimates of Sa on L1.

Step 4. Finally, let f ∈ L2
δ(R) with δ > 1/2. It remains to convert

the L1 → L∞ estimate to a weighted L2 estimate. Using that

cδ :=

(∫ ∞
−∞
〈t〉−2δ

)1/2

<∞

for δ > 1/2, we have

‖Saf‖L2
−δ

=

(∫ ∞
−∞
〈t〉−2δ|Saf(t)|2 dt

)1/2

≤ cδ‖Saf‖L∞
≤ cδ‖f‖L1

= cδ

∫ ∞
−∞
〈t〉−δ〈t〉δ|f(t)| dt

≤ c2
δ‖f‖L2

δ
.

The last inequality follows by Cauchy-Schwarz. �

Exercise 4.2. Verify the Sobolev space facts (4.7), (4.8).

Remark 4.5. We will employ the L2
δ → L2

δ estimate when |a| ≥ 1.

The proof shows that when a is small then the constant in this estimate

blows up. This is why we need the L2
δ → L2

−δ estimate for δ > 1/2,

with constant independent of a. The method for converting an L1 →
L∞ estimate to a weighted L2 estimate arises in Agmon’s scattering

theory for short range potentials. The weighted L2 estimate is more

convenient for our purposes than the stronger L1 → L∞ estimate since

the weighted L2 spaces will make it possible to use orthogonality.

We can now show the existence of solutions to the inhomogeneous

equation with no potential.
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Proposition 4.6. (Existence for V = 0) Let f ∈ L2
δ(T ) where δ >

1/2. There is C0 > 0 such that whenever |τ | ≥ 1 and τ 2 /∈ Spec(−∆g0),

then the equation

(4.9) (−∂2
1 + 2τ∂1 − τ 2 −∆g0)u = f in T

has a solution u ∈ H1
−δ,0(T ) satisfying

‖u‖L2
−δ(T ) ≤

C0

|τ |
‖f‖L2

δ(T ),

‖u‖H1
−δ(T ) ≤ C0‖f‖L2

δ(T ).

Proof. Step 1. We begin with a remark on orthogonality. Since

f ∈ L2
δ(T ), we know that f(x1, · ) ∈ L2(M0) for almost every x1. Then

for such x1 the Parseval identity implies∫
L2(M0)

|f(x1, x
′)|2 dVg0(x′) =

∞∑
l=1

|f̃(x1, l)|2.

Here f̃(x1, l) are the Fourier coefficients (4.3). It follows that

‖f‖2
L2
δ(T ) =

∫ ∞
−∞
〈x1〉2δ

(∫
M0

|f(x1, x
′)|2 dVg0(x′)

)
dx1

=

∫ ∞
−∞
〈x1〉2δ

(
∞∑
l=1

|f̃(x1, l)|2
)
dx1

=
∞∑
l=1

‖f̃( · , l)‖2
L2
δ(R).

In the last equality, we used Fubini’s theorem which is valid since

the integrand is nonnegative. In particular, this argument shows that

f̃( · , l) ∈ L2
δ(R) for all l, and that the last sum converges.

Step 2. From now on we assume that τ > 0 (the case τ < 0 is

analogous). Motivated by the discussion before (4.4), we will show

that for any l there is a solution ũ( · , l) ∈ L2
−δ(R) of the ODE

(4.10) (−∂2
1 + 2τ∂1 − τ 2 + λl)ũ( ·, l) = f̃( · , l)

satisfying the norm estimate

(4.11) ‖ũ( · , l)‖L2
−δ(R) ≤

C0

τ +
√
λl
‖f̃( · , l)‖L2

δ(R).
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In fact, using the factorization to first order equations given after (4.4),

the ODE for ũ( · , l) becomes

(∂1 − τ −
√
λl)(∂1 − τ +

√
λl)ũ( · , l) = −f̃( · , l).

Since f̃( · , l) ∈ L2
δ(R), Proposition 4.4 shows there is a unique solution

given by

(4.12) ũ( · , l) := −Sτ−√λlSτ+
√
λl
f̃( · , l).

Since τ −
√
λl 6= 0 and τ +

√
λl ≥ 1 by the assumptions on τ , the

estimates in Proposition 4.4 yield (4.11).

Step 3. With ũ( · , l) as above, define

uN(x1, x
′) :=

N∑
l=1

ũ(x1, l)φl(x
′).

Our objective is to show that as N →∞, uN converges in L2
−δ(T ) to a

function u which is a weak solution of the equation (4.9) and satisfies

‖u‖L2
−δ(T ) ≤

C0

τ
‖f‖L2

δ(T ).

If N ′ > N , the orthogonality argument in Step 1 and the estimate

(4.11) show that

‖uN ′ − uN‖2
L2
−δ(T ) =

N ′−1∑
l=N

‖ũ( · , l)‖2
L2
−δ(R) ≤

(
C0

τ

)2 N ′−1∑
l=N

‖f̃( · , l)‖2
L2
δ(R).

Since f ∈ L2
δ(T ) the last expression converges to zero as N,N ′ → ∞.

This shows that (uN) is a Cauchy sequence in L2
−δ(T ), hence converges

to a function u ∈ L2
−δ(T ).

Using that −∆g0φl = λlφl, we have by (4.10)

(−∂2
1 + 2τ∂1 − τ 2 −∆g0)uN =

N∑
l=1

(−∂2
1 + 2τ∂1 − τ 2 + λl)ũ(x1, l)φl(x

′)

=
N∑
l=1

f̃(x1, l)φl(x
′).

The right hand side converges to f in L2
δ(T ) as N → ∞. Integrating

against a test function in C∞c (T int), we see that u is indeed a weak
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solution of (4.9). The norm estimate follows from orthogonality and

(4.11):

‖u‖2
L2
−δ(T ) =

∞∑
l=1

‖ũ( · , l)‖2
L2
−δ(R) ≤

(
C0

τ

)2 ∞∑
l=1

‖f̃( · , l)‖2
L2
δ(R)

≤
(
C0

τ

)2

‖f‖2
L2
δ(T ).

Step 4. It remains to show that u ∈ H1
−δ,0(T ) and

‖u‖H1
−δ(T ) ≤ C0‖f‖L2

δ(T ).

This can be done by looking at the first order derivatives in x1 and x′

separately. By the definition (4.12) of ũ( · , l) (where of course Sτ−
√
λl

and Sτ+
√
λl

can be interchanged) and the definition of Sa, we have

∂1ũ( · , l) = (τ +
√
λl)ũ( · , l)− Sτ−√λl f̃( · , l).

Then (4.11) and Proposition 4.4 imply

‖∂1ũ( · , l)‖L2
−δ(R) ≤ C0‖f̃( · , l)‖L2

δ(R).

Orthogonality shows that ‖∂1u‖L2
−δ(T ) ≤ C0‖f‖L2

δ(T ).

For the x′ derivatives we use the exterior derivative dx′ in (M0, g0).

Since uN vanishes on R× ∂M0, we have

‖dx′uN‖2
L2
−δ(T ) =

∫ ∞
−∞
〈x1〉−2δ〈dx′uN , dx′ūN〉M0 dx1

=

∫ ∞
−∞
〈x1〉−2δ〈(−∆g0uN), ūN〉M0 dx1

=

∫ ∞
−∞

N∑
l=1

〈x1〉−2δλl|ũ( · , l)|2 dx1

=
N∑
l=1

λl‖ũ( · , l)‖2
L2
−δ(R).

Orthogonality and (4.11) give the estimate ‖dx′uN‖2
L2
−δ(T )

≤ C0‖f‖2
L2
δ(T )

.

An argument using Cauchy sequences shows that dx′uN converges in

L2
−δ(T ), hence also dx′u ∈ L2

−δ(T ) and ‖dx′u‖L2
−δ(T ) ≤ C0‖f‖L2

δ(T ).

We have proved that u ∈ H1
−δ(T ) with the right norm estimate. It

is now enough to note that uN ∈ H1
−δ,0(T ), and the same is true for

the limit u since this space is closed in H1
−δ(T ). �
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We have now completed the proof of Theorem 4.1 in the case where

c = 1 and V = 0. In fact, the combination of Propositions 4.3 and

4.6 immediately shows the existence of a solution operator Gτ for the

conjugated Laplace-Beltrami equation with metric g = e⊕ g0.

Proposition 4.7. (Solution operator for V = 0) Let δ > 1/2. If

|τ | ≥ 1 and τ 2 /∈ Spec(−∆g0), there is a bounded operator

Gτ : L2
δ(T )→ H1

−δ,0(T )

such that u = Gτf is the unique solution in H1
−δ,0(T ) of the equation

eτx1(−∆g)e
−τx1u = f in T .

This operator satisfies

‖Gτf‖L2
−δ(T ) ≤

C0

|τ |
‖f‖L2

δ(T ),

‖Gτf‖H1
−δ(T ) ≤ C0‖f‖L2

δ(T ).

It is now an easy matter to prove Theorem 4.1 also with a nonzero

potential V by using a perturbation argument.

Proof of Theorem 4.1. We assume, as we may, that c ≡ 1. Let

us first consider uniqueness. Assume that u ∈ H1
−δ,0(T ) satisfies

eτx1(−∆g + V )e−τx1u = 0 in T .

This can be written as

eτx1(−∆g)e
−τx1u = −V u in T .

By the assumption 〈x1〉2δV ∈ L∞(T ), the right hand side is in L2
δ(T ).

The uniqueness part of Proposition 4.7 implies

u = −Gτ (V u).

The norm estimates for Gτ give

‖u‖L2
−δ(T ) ≤

C0‖〈x1〉2δV ‖L∞(T )

|τ |
‖u‖L2

−δ(T ).

Thus, if we choose

(4.13) τ0 := max(2C0‖〈x1〉2δV ‖L∞(T ), 1),

then the condition |τ | ≥ τ0 will imply ‖u‖L2
−δ(T ) ≤ 1

2
‖u‖L2

−δ(T ), showing

that u ≡ 0.
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As for existence, we seek a solution of the equation

eτx1(−∆g + V )e−τx1u = f in T

in the form u = Gτ f̃ for some f̃ ∈ L2
δ(T ). Inserting this expression

in the equation and using that Gτ is the inverse of the conjugated

Laplace-Beltrami operator, we see that f̃ should satisfy

(Id + V Gτ )f̃ = f in T .

Now if |τ | ≥ τ0 with τ0 as in (4.13), we have

‖V Gτ‖L2
δ(T )→L2

δ(T ) ≤
C0‖〈x1〉2δV ‖L∞(T )

|τ |
≤ 1

2
.

Thus Id + V Gτ is invertible on L2
δ(T ), with norm of the inverse ≤ 2.

It follows that u := Gτ (Id + V Gτ )
−1f is a solution with the required

properties. �

Exercise 4.3. Prove that the solution construction in Theorem 4.1

is in fact in H2
−δ(T ) and satisfies ‖u‖H2

−δ(T ) ≤ C0|τ |‖f‖L2
δ(T ).

Exercise 4.4. Prove Theorem 4.1 in the more general case where

the Schrödinger operator −∆g + V with 〈x1〉2δV ∈ L∞(T ) is replaced

by a Helmholtz operator −∆g + V − k2 where k > 0 is fixed.





CHAPTER 5

Uniqueness result

In this chapter we will prove a uniqueness result for the inverse

problem considered in the introduction. The result will be proved for

the case of the Schrödinger equation in a compact manifold (M, g).

The method, as discussed in Chapter 3, is to show that the set of

products {u1u2} of solutions to two Schrödinger equations is dense in

L1(M). The special solutions which will be used to prove the density

statement have the form

u = e±τϕ(m+ r0).

The starting point for constructing such solutions is an LCW ϕ.

For this reason we will need to work in manifolds which admit LCWs.

Thus we will assume that (M, g) is contained in a cylinder (T, g) where

T = R×M0 and g = c(e⊕g0), which is roughly equivalent to M having

an LCW by the results in Chapter 3.

However, the existence of an LCW is only a starting point for the

solution of the inverse problem. One also needs construct the term m so

that e±τϕm is an approximate solution, which can be corrected into an

exact solution by the term r0 obtained from solving an inhomogeneous

equation as in Chapter 4. Finally, one needs to do this construction

so that the density of the products {u1u2} can be proved by using the

special solutions. In Euclidean space one typically employs the Fourier

transform, which is not immediately available in (M, g).

We will use a hybrid method which involves the Fourier transform

in the x1 variable where it is available, and integrals over geodesics in

the x′ variables. In fact, we will choose the functions m to concentrate

near fixed geodesics in (M0, g0). The uniqueness theorem will then rely

on the result that a function in M0 can be determined from its integrals

over geodesics. At present, such a result is only known under strong

restrictions on the geodesic flow of (M0, g0). One such restriction is

that (M0, g0) is simple, meaning roughly that any two points can be

connected by a unique length minimizing geodesic.

75
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Leaving the precise definition of simple manifolds to Section 5.2,

we now define the class of admissible manifolds for which we can prove

uniqueness results for inverse problems. There are three conditions:

the first one requiring the dimension to be at least three (the case

of 2D manifolds requires quite different methods), the second stating

that the manifold should admit an LCW, and the third stating that

the transversal manifold (M0, g0) satisfies a restriction ensuring that

functions are determined by their integrals over geodesics.

Definition. A compact manifold (M, g) with smooth boundary is

called admissible if

(a) dim(M) ≥ 3,

(b) (M, g) ⊂⊂ (T, g) where T = R ×M0 and g = c(e ⊕ g0) with

c > 0 a smooth positive function and e the Euclidean metric

on R, and

(c) (M0, g0) is a simple (n− 1)-dimensional manifold.

The main uniqueness result is as follows. Recall that we implicitly

assume that all DN maps are well defined.

Theorem 5.1. (Global uniqueness) Let (M, g) be an admissible

manifold, and assume that V1 and V2 are continuous functions on M .

If Λg,V1 = Λg,V2, then V1 = V2.

In fact, it is enough to prove the theorem for admissible manifolds

where the conformal factor is constant and V1 and V2 are in Cc(M
int).

In the proofs below, we will work under these assumptions. We now

give a sketch how to make this reduction.

Suppose (M, g) is admissible and g = cg̃ with g̃ = e⊕g0, and assume

that Λg,V1 = Λg,V2 . Note that we are free to assume that c = 1 outside

a small neighborhood of M in T . A boundary determination result [4,

Theorem 8.4] shows that V1|∂M = V2|∂M . Extending V1, V2 to a slightly

larger admissible manifold (M̃, g) so that c = 1 and V1 = V2 = 0 near

∂M̃ , it is not hard to see that Λg,V1 = Λg,V2 for the DN maps in (M̃, g).

Now by the conformal scaling law for ∆g, it holds that

Λcg̃,Vj = Λg̃,c(Vj−qc)

where qc = c
n−2
4 ∆cg̃(c

−n−2
4 ). Thus Λg̃,V1 = Λg̃,V2 for the DN maps in

(M̃, g̃), which completes the reduction.
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5.1. Complex geometrical optics solutions

Here we will construct the special solutions, also called complex

geometrical optics solutions, to the Schrödinger equation. The first

step is to construct approximate solutions

u0 = e−τΦa

where τ > 0 is a large parameter, Φ ∈ C∞(M) is a complex function

(the complex phase), and a is smooth complex function on M (the

complex amplitude). Note that we have replaced the real function ϕ

with a complex function Φ. In fact the real part of Φ is later taken to

be an LCW ϕ.

We extend the inner product 〈 · , · 〉 as a C-bilinear form to complex

tangent and cotangent vectors. This means that for ξ, η, ξ′, η′ ∈ T ∗pM ,

〈ξ + iη, ξ′ + iη′〉 := 〈ξ, ξ′〉 − 〈η, η′〉+ i(〈ξ, η′〉+ 〈η, ξ′〉).

Note that 〈 · , · 〉 is not a Hermitian inner product, since there are

nonzero complex vectors whose inner product with itself is zero.

With this notation, we have the following analog of the computation

in Lemma 3.2 (just replace ϕ by Φ).

Lemma 5.2. (Expression for conjugated Schrödinger operator)

eτΦ(−∆g + V )e−τΦv = −τ 2〈dΦ, dΦ〉v
+ τ [2〈dΦ, dv〉+ (∆gΦ)v] + (−∆g + V )v.

Note that this result gives an expansion of the conjugated operator

eτΦ(−∆g+V )e−τΦ in terms of powers of τ . We will look for approximate

solutions u0 = e−τΦa such that the terms with highest powers of τ

go away. This leads to equations for Φ and a, and also an equation

for the correction term r0 when one looks for the exact solution u

corresponding to u0. The next result follows from Lemma 5.2.

Proposition 5.3. (Equations) Let (M, g) be a compact manifold

with boundary and let V ∈ L∞(M). The function u = e−τΦ(a + r0) is

a solution of (−∆g + V )u = 0 in M , provided that in M

〈dΦ, dΦ〉 = 0,(5.1)

2〈dΦ, da〉+ (∆gΦ)a = 0,(5.2)

eτΦ(−∆g + V )e−τΦr0 = (∆g − V )a.(5.3)
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The last result is analogous the (real) geometrical optics method,

or the WKB method, for constructing solutions to various equations.

The main difference to the standard setting is that we need to consider

complex quantities. Here (5.1) is called a complex eikonal equation,

that is, a certain nonlinear first order equation for the complex phase

Φ. The equation (5.2) is a complex transport equation, which is a linear

first order equation for the amplitude a. The last equation (5.3) is an

inhomogeneous equation for the correction term r0.

Writing Φ = ϕ + iψ where ϕ and ψ are real, the equation (5.3)

becomes

eτϕ(−∆g + V )e−τϕ(e−iτψr0) = e−iτψ(∆g − V )a.

This equation can be solved by Theorem 4.1 if ϕ is an LCW and the

manifold has an underlying product structure. Using that ψ is real we

have ‖e−iτψv‖L2(M) = ‖v‖L2(M), so the terms e−iτψ will not change the

resulting L2 estimates.

We now assume that (M, g) is admissible, and further that c ≡ 1

which is possible by the reduction above. Thus (M, g) is embedded

in the cylinder (T, g) where T = R ×M0 and g = e ⊕ g0, and further

(M0, g0) ⊂⊂ (U, g0) with (U, g0) simple. In the coordinates x = (x1, x
′),

g(x1, x
′) =

(
1 0

0 g0(x′)

)
.

We also assume that Re(Φ) = ϕ where ϕ(x1, x
′) := x1 is the natural

LCW in the cylinder.

Eikonal equation. Writing Φ = ϕ + iψ where ϕ and ψ are real

valued, the complex eikonal equation (5.1) becomes the pair of equa-

tions

(5.4) |dψ|2 = |dϕ|2, 〈dϕ, dψ〉 = 0.

Using that ϕ(x) = x1 and the special form of the metric, these equa-

tions become

|dψ|2 = 1, ∂1ψ = 0.

The second equation just means that ψ should be independent of x1,

that is, ψ = ψ(x′). Thus we have reduced matters to solving a (real)

eikonal equation in M0:

|dψ|2g0 = 1 in M0.
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Such an equation does not have global smooth solutions on a general

manifold (M0, g0). However, in our case where (M0, g0) is assumed to

be simple (see Section 5.2), there are many global smooth solutions. It

is enough to choose some point ω ∈ U rM0 and to take

ψ(x1, r, θ) = ψω(x1, r, θ) := r

where (r, θ) are polar normal coordinates in (U, g0) with center ω. Since

|dr|g0 = 1 on the maximal domain where polar normal coordinates are

defined (excluding the center), this gives a smooth solution in M .

In fact, if x = (x1, r, θ) are coordinates in T where (r, θ) are polar

normal coordinates in (U, g0) with center ω, then the form of the metric

g0 in polar normal coordinates shows that

(5.5) g(x1, r, θ) =

 1 0 0

0 1 0

0 0 g1(r, θ)


for some (n − 2) × (n − 2) positive definite matrix g1. This gives the

coordinate representation

Φ(x1, r, θ) = Φω(x1, r, θ) := x1 + ir.

Remark 5.4. For n = 2 the complex eikonal equation, which is

equivalent to the pair (5.4), just says that ϕ and ψ should be (anti)-

conjugate harmonic functions, so that Φ should be (anti)holomorphic.

In dimensions n ≥ 3 solutions of the complex eikonal equation can be

considered as analogs in a certain sense of (anti)holomorphic functions.

In our setting, using the given coordinates, Φ is just x1 + ir which can

be considered as a complex variable z and hence also as a holomorphic

function.

Transport equation. Having obtained the complex phase Φ =

ϕ + iψ = x1 + ir, it is not difficult to solve the complex transport

equation. Using the coordinates (x1, r, θ) and the special form (5.5) for

the metric, we see that

〈dΦ, da〉 = gjk∂jΦ∂ka = (∂1 + i∂r)a
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and

∆gΦ = |g|−1/2∂j(|g|1/2gjk∂k(x1 + ir))

= |g|−1/2∂r(|g|1/2i)

=
1

2
(∂1 + i∂r)(log |g|).

The transport equation (5.2) now has the form

(∂1 + i∂r)a+ (∂1 + i∂r)(log |g|1/4)a = 0.

Multiplying by the integrating factor |g|1/4, we obtain the equivalent

equation

(∂ + i∂r)(|g|1/4a) = 0.

Thus the complex amplitudes satisfying (5.2) have the form

a(x1, r, θ) = |g|−1/4a0(x1, r, θ)

where a0 is a smooth function in M satisfying (∂1 + i∂r)a0 = 0.

Inhomogeneous equation. Given Φ and a, the final equation

(5.3) in the present setting becomes

eτx1(−∆g + V )e−τx1(e−iτrr0) = f in M

where f := e−iτr(∆g − V )a. We extend V and f by zero to T , and

consider the equation

eτx1(−∆g + V )e−τx1v = f in T.

If |τ | is large and τ 2 /∈ Spec(−∆g0), this equation has a unique solution

v ∈ H1
−δ,0(T ) by Theorem 4.1. It satisfies for any δ > 1/2

‖v‖L2
−δ(T ) ≤

C0

|τ |
‖f‖L2

δ(T ).

Define r0 := eiτrv|M . Then r0 ∈ H1(M) and

‖r0‖L2(M) ≤
C0

|τ |
‖a‖H2(M).

Also, r0 satisfies (5.3) by construction.

We collect the results of the preceding arguments in the next propo-

sition.
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Proposition 5.5. (Complex geometrical optics solutions) Assume

(M, g) is an admissible manifold embedded in (T, g), where T = R×M0

and g = e ⊕ g0 and where (M0, g0) ⊂⊂ (U, g0) are simple manifolds.

Let also V ∈ L∞(M). There are C0, τ0 > 0 such that whenever

|τ | ≥ τ0 and τ 2 /∈ Spec(−∆g0),

then for any ω ∈ U rM0 and for any smooth function a0 in M with

(∂1 + i∂r)a0 = 0, where (x1, r, θ) are coordinates in M such that (r, θ)

are polar normal coordinates in (U, g0) with center ω, there is a solution

u = e−τ(x1+ir)(|g|−1/4a0 + r0)

of the equation (−∆g + V )u = 0 in M , such that

‖r0‖L2(M) ≤
C0

|τ |
‖a0‖H2(M).

We can now complete the proof of Theorem 5.1, modulo the follow-

ing statement on the attenuated geodesic ray transform which will be

discussed in the next section.

Theorem. (Injectivity for the attenuated geodesic ray transform)

Let (M0, g0) be a simple manifold. There exists ε > 0 such that for any

λ ∈ (−ε, ε), if a function f ∈ C(M0) satisfies∫
γ

e−λtf(γ(t)) dt

for any maximal geodesic γ going from ∂M0 into M0, then f ≡ 0.

Proof of Theorem 5.1. We make the reduction described after

Theorem 5.1 to the case where c ≡ 1 and V1, V2 ∈ Cc(M
int). The

assumption that Λg,V1 = Λg,V2 implies that∫
M

(V1 − V2)u1u2 dV = 0

for any uj ∈ H1(M) with (−∆g + Vj)uj = 0 in M .

We use Proposition 5.5 and choose uj to be solutions of the following

form. Let ω be a fixed point in U rM0, let (x1, r, θ) be coordinates

near M such (r, θ) are polar normal coordinates in (U, g0) with center

ω, and let λ be a fixed real number and b = b(θ) ∈ C∞(Sn−2) a fixed

function. Then, for τ > 0 large enough and outside a discrete set, we
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can choose uj of the form

u1 = e−τ(x1+ir)(|g|−1/4eiλ(x1+ir)b(θ) + r1),

u2 = eτ(x1+ir)(|g|−1/4 + r2).

Note that the functions eiλ(x1+ir)b(θ) and 1 are holomorphic in the

(x1, r) variables, so we indeed have solutions of this form. Further,

‖rj‖L2(M) ≤ C/τ .

Inserting the solutions in the integral identity and letting τ → ∞
outside a discrete set, we obtain∫

M

(V1 − V2)|g|−1/2eiλ(x1+ir)b(θ) dVg = 0.

Since V1 and V2 are compactly supported, the integral can be taken

over the cylinder T . Using the (x1, r, θ) coordinates in T and the fact

that dVg = |g(x1, r, θ)|1/2 dx1 dr dθ, this implies that∫
Sn−2

[∫ ∞
−∞

∫ ∞
0

(V1 − V2)(x1, r, θ)e
iλ(x1+ir) dx1 dr

]
b(θ) dθ = 0.

The last statement is valid for any fixed b ∈ C∞(Sn−2). We can choose b

to resemble a delta function at a fixed direction θ0 in Sn−2, and varying

b will then imply that the quantity in brackets vanishes for all θ0. This

is the point where we have chosen the solution u1 to approximately

concentrate near a fixed geodesic, corresponding to a fixed direction in

Sn−2, in the transversal manifold (M0, g0).

We have proved that∫ ∞
0

e−λr
[∫ ∞
−∞

(V1 − V2)(x1, r, θ)e
iλx1 dx1

]
dr = 0, for all θ.

Denote the quantity in brackets by fλ(r, θ). Then fλ is a smooth func-

tion in (M0, g0) compactly supported in M int
0 , and the curve γω,θ : r 7→

(r, θ) is a geodesic in (U, g0) issued from the point ω in direction θ.

This shows that ∫ ∞
0

e−λrfλ(γω,θ(r)) dr = 0

for all ω ∈ U rM0 and for all directions θ. Letting ω approach the

boundary of M0 and varying θ, the last result implies that∫
γ

e−λtfλ(γ(t)) dt = 0
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for all geodesics γ starting from points of ∂M0 which are maximal in

the sense that γ is defined for the maximal time until it exits M0.

The injectivity result for the attenuated geodesic ray transform,

stated just before this proof, shows that there is ε > 0 such that for

any λ ∈ (−ε, ε), the function fλ is identically zero on M0. Thus for

|λ| < ε,∫ ∞
−∞

(V1 − V2)(x1, r, θ)e
iλx1 dx1 = 0, for any fixed r, θ.

If (r, θ) is fixed then the function x1 7→ (V1 − V2)(x1, r, θ) is compactly

supported on the real line, and the last result says that its Fourier trans-

form vanishes for |λ| < ε. But by the Paley-Wiener theorem the Fourier

transform is analytic, which is only possible if (V1− V2)( · , r, θ) = 0 on

the real line. This is true for any fixed (r, θ), showing that V1 = V2 as

required. �

5.2. Geodesic ray transform

In this section we will give some arguments related to the injectivity

result for the attenuated geodesic ray transform, which was used in the

proof of the global uniqueness theorem. The treatment will be very

sketchy and not self-contained, but hopefully it will give an idea about

why such a result would be true.

Explicit inversion methods. To set the stage and to obtain some

intuition to the problem, we first consider the classical question of

inverting the Radon transform in R2. This is the transform which

integrates a function f ∈ C∞c (R2) over all lines, and can be expressed

as follows:

Rf(s, ω) :=

∫ ∞
−∞

f(sω⊥ + tω) dt, s ∈ R, ω ∈ S1.

Here ω⊥ is the vector in S1 obtained by rotating ω counterclockwise

by 90◦.

There is a well-known relation between Rf and the Fourier trans-

form f̂ . We denote by R̂f( · , ω) the Fourier transform of Rf with

respect to s.

Proposition 5.6. (Fourier slice theorem)

R̂f(σ, ω) = f̂(σω⊥).
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Proof. Parametrizing R2 by y = sω⊥ + tω, we have

R̂f(σ, ω) =

∫ ∞
−∞

e−iσs
∫ ∞
−∞

f(sω⊥ + tω) dt ds =

∫
R2

e−iσy·ω
⊥
f(y) dy

= f̂(σω⊥).

�

This result gives the first proof of injectivity of Radon transform:

if f ∈ C∞c (R2) is such that Rf ≡ 0, then f̂ ≡ 0 and consequently

f ≡ 0. To obtain a different inversion formula, and for later purposes,

we will consider the adjoint of R. This is obtained by computing for

f ∈ C∞c (R2) and h ∈ C∞(R× S1) that

(Rf, h)R×S1 =

∫ ∞
−∞

∫
S1

Rf(s, ω)h(s, ω) dω ds

=

∫ ∞
−∞

∫
S1

∫ ∞
−∞

f(sω⊥ + tω)h(s, ω) dt dω ds

=

∫
R2

f(y)

(∫
S1

h(y · ω⊥, ω) dω

)
dy.

Thus the adjoint of R is the operator

R∗ : C∞(R× S1)→ C∞(R2), R∗h(y) =

∫
S1

h(y · ω⊥, ω) dω.

Proposition 5.7. (Fourier transform of R∗) Letting ξ̂ = ξ
|ξ| ,

(R∗h)̂ (ξ) =
2π

|ξ|

(
ĥ(|ξ|,−ξ̂⊥) + ĥ(−|ξ|, ξ̂⊥)

)
.

Proof. We will make a formal computation (which is not difficult

to justify). Using again the parametrization y = sω⊥ + tω,

(R∗h)̂ (ξ) =

∫
R2

∫
S1

e−iy·ξh(y · ω⊥, ω) dω dy

=

∫ ∞
−∞

∫ ∞
−∞

∫
S1

e−isω
⊥·ξe−itω·ξh(s, ω) dω ds dt

=

∫
S1

ĥ(ω⊥ · ξ, ω)

(∫ ∞
−∞

e−itω·ξ dt

)
dω.

The quantity in the parentheses is just 2π
|ξ|δ0(ω · ξ̂) where δ0 is the Dirac

delta function at the origin. Since ω · ξ̂ is zero exactly when ω = ±ξ̂⊥,

the result follows. �
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The Radon transform in R2 satisfies the symmetry Rf(−s,−ω) =

Rf(s, ω), and the Fourier slice theorem implies

(R∗Rf )̂ (ξ) =
4π

|ξ|
R̂f(|ξ|,−ξ̂⊥) =

4π

|ξ|
f̂(ξ).

This shows that the normal operator R∗R is a classical pseudodifferen-

tial operator of order −1 in R2, and also gives an inversion formula.

Proposition 5.8. (Normal operator) One has

R∗R = 4π(−∆)−1/2,

and f can be recovered from Rf by the formula

f =
1

4π
(−∆)1/2R∗Rf.

The last result is an example of an explicit inversion method for

the Radon transform in the Euclidean plane, based on the Fourier

transform. Similar methods are available for the Radon transform on

manifolds with many symmetries where variants of the Fourier trans-

form exist (see [8] and other books of Helgason for results of this type).

However, for manifolds which do not have symmetries, such as small

perturbations of the Euclidean metric, explicit transforms are usually

not available and other inversion methods are required.

Pseudodifferential methods. Let (M, g) be a compact manifold

with smooth boundary, assumed to be embedded in a compact manifold

(N, g) without boundary. We parametrize geodesics by points in the

unit sphere bundle, defined by

SM :=
∨
x∈M

SxM, SxM := {ξ ∈ TxM ; |ξ| = 1}.

If (x, ξ) ∈ SM we denote by γ(t, x, ξ) the geodesic in N which starts

at the point x in direction ξ, that is,

Dγ̇ γ̇ = 0, γ(0, x, ξ) = x, γ̇(0, x, ξ) = ξ.

Let τ(x, ξ) be the first time when γ(t, x, ξ) exits M ,

τ(x, ξ) := inf {t > 0 ; γ(t, x, ξ) ∈ N rM}.

We assume that (M, g) is nontrapping, meaning that τ(x, ξ) is finite

for any (x, ξ) ∈ SM .
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The geodesic ray transform of a function f ∈ C∞(M) is defined by

If(x, ξ) :=

∫ τ(x,ξ)

0

f(γ(t, x, ξ)) dt, (x, ξ) ∈ ∂(SM).

Thus, If gives the integral of f over any maximal geodesic in M

starting from ∂M , such geodesics being parametrized by points of

∂(SM) = {(x, ξ) ∈ SM ; x ∈ ∂M}.
So far, we have not imposed any restrictions on the behavior of

geodesics in (M, g) other than the nontrapping condition. However,

injectivity and inversion results for If are only known under strong geo-

metric restrictions. One class of manifolds where such results have been

proved is the following. From now on the treatment will be sketchy,

and we refer to [4], [2], [18] for more details.

Definition. A compact manifold (M, g) with boundary is called

simple if

(a) for any point p ∈M , the exponential map expp is a diffeomor-

phism from its maximal domain in TpM onto M , and

(b) the boundary ∂M is strictly convex.

Several remarks are in order. A diffeomorphism is, as earlier, a

homeomorphism which together with its inverse is smooth up to the

boundary. The maximal domain of expp is starshaped, and the fact that

expp is a diffeomorphism onto M thus implies that M is diffeomorphic

to a closed ball. The last fact uses that τ is smooth in S(M int). This is

a consequence of strict convexity, which is precisely defined as follows:

Definition. Let (M, g) be a compact manifold with boundary. We

say that ∂M is stricly convex if the second fundamental form l∂M is

positive definite. Here l∂M is the 2-tensor on ∂M defined by

l∂M(X, Y ) = −〈DXν, Y 〉, X, Y ∈ C∞(∂M, T (∂M)),

where ν is the outer unit normal to ∂M .

Alternatively, the boundary is strictly convex iff any geodesic in

N starting from a point x ∈ ∂M in a direction tangent to ∂M stays

outside M for small positive and negative times. This implies that any

maximal geodesic going from ∂M into M stays inside M except for its

endpoints, which corresponds to the usual notion of strict convexity.
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If (M, g) is simple, one can always find an open manifold (U, g)

such that (M, g) ⊂⊂ (U, g) where (U, g) is simple. We will always

understand that (M, g) and (U, g) are related in this way.

Intuitively, a manifold is simple if the boundary is strictly convex

and if the whole manifold can be parametrized by geodesic rays starting

from any fixed point. The last property can be thought of as an analog

for the parametrization y = sω⊥ + tω of R2 used in the discussion of

the Radon transform in the plane. These parametrizations can be used

to prove the analog of the first part of Proposition 5.8 on a simple

manifold.

Proposition 5.9. (Normal operator) If (M, g) is a simple mani-

fold, then Ĩ∗Ĩ is an elliptic pseudodifferential operator of order −1 in

U where Ĩ is the geodesic ray transform in (U, g).

It is well known that elliptic pseudodifferential operators can be

inverted up to smoothing (and thus compact) operators. This implies

an inversion formula as in Proposition 5.8 which however contains a

compact error term (resulting in a Fredholm problem). If g is real-

analytic in addition to being simple then this error term can be removed

by the methods of analytic microlocal analysis, thus proving injectivity

of I in this case.

For general simple metrics one does not obtain injectivity in this

way, but invertibility up to a compact operator implies considerable

stability properties for this problem. In particular, if I is known to

be injective in (M, g), then suitable small perturbations of I are also

injective: it follows from the results of [7] that injectivity of I implies

the injectivity of the attenuated transform in Section 5.1 for sufficiently

small λ. Thus, it remains to prove in some way the injectivity of the

unattenuated transform I on simple manifolds.

Energy estimates. The most general known method for proving

injectivity of the geodesic ray transform, in the absence of symmetries

or real-analyticity, is based on energy estimates. Typically these esti-

mates allow to bound some norm of a function u by some norm of Pu

where P is a differential operator, or to prove the uniqueness result

that u = 0 whenever Pu = 0. Such estimates are often proved by

integration by parts.



88 5. UNIQUENESS RESULT

Motivation. Let us consider a very simple energy estimate for the

Laplace operator in a bounded open set Ω ⊆ R2 with smooth boundary.

Suppose that u ∈ C2(Ω) and −∆u = 0 in Ω, u|∂Ω = 0. We wish to

show that u = 0. To do this, we integrate the equation −∆u = 0

against the test function u and use the Gauss-Green formula:

0 =

∫
Ω

(−∆u)u dx = −
∫
∂Ω

∂u

∂ν
u dS +

∫
Ω

|∇u|2 dx.

Since u|∂Ω = 0 it follows that
∫

Ω
|∇u|2 dx = 0, showing that u is con-

stant on each component and consequently u = 0.

We will now proceed to prove an energy estimate for the geodesic

ray transform in the case (M, g) = (Ω, e) where Ω ⊆ R2 is a bounded

open set with strictly convex boundary and e is the Euclidean metric.

This will give an alternative proof of the injectivity result for the Radon

transform in R2, the point being that this proof only uses integration

by parts and can be generalized to other geometries.

Suppose f ∈ C∞c (M int) and If ≡ 0. The first step is to relate

the integral operator I to a differential operator. This is the standard

reduction of the integral geometry problem to a transport equation.

We identify SM with M × S1 and vectors ωθ = (cos θ, sin θ) ∈ S1 with

the angle θ ∈ [0, 2π). Consider the function u defined as the integral

of f over lines,

u(x, θ) :=

∫ τ(x,θ)

0

f(x+ tωθ) dt, x ∈M, θ ∈ [0, 2π).

The geodesic vector field is the differential operator on SM defined for

v ∈ C∞(SM) by

H v(x, θ) :=
∂

∂s
v(x+ sωθ, θ)

∣∣∣∣
s=0

= ωθ · ∇xv(x, θ).

Since u is the integral of f over lines and H differentiates along lines,

it is not surprising that

H u(x, θ) =
∂

∂s

∫ τ(x,θ)−s

0

f(x+ (s+ t)ωθ) dt

∣∣∣∣∣
s=0

=

∫ τ(x,θ)

0

∂

∂t
f(x+ tωθ) dt = −f(x).

Here we used the rule for differentiating under the integral sign.
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Thus, if f ∈ C∞c (M int) and If ≡ 0, then u as defined above is

a smooth function in SM and satisfies the following boundary value

problem for the transport equation involving H :

(5.6)

{
H u = −f in SM,

u = 0 on ∂(SM).

Further, since f does not depend on θ, we can take the derivative in θ

and obtain

(5.7)

{
∂θH u = 0 in SM,

u = 0 on ∂(SM).

We will prove an energy estimate which shows that any smooth solution

u of this problem must be identically zero. By (5.6) this will imply

that f ≡ 0, proving that I is injective (at least on smooth compactly

supported functions, which we assume for simplicity).

To establish the energy estimate, we use ∂θH u as a test function

and integrate (5.7) against this function, and then apply integration

by parts to identify some positive terms and to show that some terms

are zero. This will make use of the following special identity.

Proposition 5.10. (Pestov identity in R2) For smooth u = u(x, θ),

one has the identity

|∂θH u|2 = |H ∂θu|2 + divh(V ) + divv(W )

where for smooth X = (X1(x, θ), X2(x, θ)), the horizontal and vertical

divergence are defined by

divh(X) := ∇x ·X(x, θ),

divv(X) := ∇ξ · (X(x,
ξ

|ξ|
))|ξ=ωθ = ω⊥θ · ∂θX(x, θ)

and the vector fields V and W are given by

V :=
[
(ω⊥θ · ∇xu)ωθ − (ωθ · ∇xu)ω⊥θ

]
∂θu,

W := (ωθ · ∇xu)∇xu.

Once the identity is known, the proof is in fact a direct computation

and is left as an exercise. Let us now show how the Pestov identity can

be used to prove that the only solution to (5.7) is the zero function.

Note how the divergence terms are converted to boundary terms by in-

tegration by parts, and how one term vanishes because of the boundary

condition and the other term is nonnegative.
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Proposition 5.11. If u ∈ C∞(SM) solves (5.7), then u ≡ 0.

Proof. As promised, we integrate (5.7) against the test function

∂θH u and use the Pestov identity:

0 =

∫
M

∫
S1

|∂θH u|2 dθ dx

=

∫
M

∫
S1

(
|H ∂θu|2 + divh(V ) + divv(W )

)
dθ dx.

Here∫
M

divh(V ) dx =

∫
M

∇x · V (x, θ) dx =

∫
∂M

ν · V (x, θ) dS(x) = 0

since V (x, θ) = [ · ]∂θu(x, θ) = 0 for x ∈ ∂M by the boundary condition

for u. Also, integrating by parts on S1,∫
S1

divv(W ) dθ =

∫
S1

ω⊥θ · ∂θW dθ = −
∫
S1

∂θ(− sin θ, cos θ) ·W dθ

=

∫
S1

ωθ ·W dθ =

∫
S1

|ωθ · ∇xu|2 dθ.

This shows that∫
M

∫
S1

(
|H ∂θu|2 + |ωθ · ∇xu|2

)
dθ dx = 0.

Since the integrand is nonnegative, we see that ωθ · ∇xu = 0 on SM .

Thus u( · , θ) is constant along lines with direction ωθ, and the boundary

condition implies that u = 0 as required. �

This concludes the energy estimate proof of the injectivity of the ray

transform in bounded domains in R2. A similar elementary argument

can be used to show that the geodesic ray transform is injective on

simple domains in R2, see [1] or [18].

Let us finish by sketching the proof of the injectivity result for the

geodesic ray transform on simple manifolds of any dimension n ≥ 2.

For details see [18] and [4, Section 7] in particular.

Proposition 5.12. (Injectivity of the geodesic ray transform) Let

(M, g) be a simple n-manifold, let f ∈ C∞c (M int), and suppose that

If ≡ 0. Then f ≡ 0.
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Proof. (Sketch) If (M, g) and f are as in the statement, then as

in the R2 case we define a function u ∈ C∞(SM) by

u(x, ξ) :=

∫ τ(x,ξ)

0

f(γ(t, x, ξ)) dt, (x, ξ) ∈ SM.

The geodesic vector field acting on smooth functions v ∈ C∞(SM) is

given by

H v(x, ξ) :=
∂

∂t
v(γ(t, x, ξ), γ̇(t, x, ξ))

∣∣∣
t=0
.

Since If ≡ 0, we obtain as above that u solves the transport equation

(5.8)

{
H u = −f in SM,

u = 0 on ∂(SM).

At this point we would like to differentiate the equation in the an-

gular variable ξ to remove the f term. To do this, we need to introduce

the horizontal and vertical gradients ∇ and ∂, which are invariantly de-

fined differential operators on so called semibasic tensors on SM . For

smooth functions v ∈ C∞(SM), they are defined by

∇ju(x, ξ) :=
∂

∂xj
(u(x, ξ/|ξ|))− Γljkξ

k∂lu(x, ξ),

∂ju(x, ξ) :=
∂

∂ξj
(u(x, ξ/|ξ|)).

The geodesic vector field can be defined on semibasic tensor fields via

H := ξj∇j. We also define |∂v|2 := gjk∂jv∂kv, etc. One then has the

following general Pestov identity whose proof is again a direct compu-

tation (which uses basic properties of ∇ and ∂). A major difference to

the Euclidean case is the appearance of a curvature term.

Proposition 5.13. (Pestov identity) If (M, g) is an n-manifold

and u ∈ C∞(SM), one has the identity

|∂H u|2 = |H ∂u|2 + divh(V ) + divv(W )−R(∂u, ξ, ξ, ∂u)

where the horizontal and vertical divergence are defined by

divh(X) := ∇jX
j, divv(X) := ∂jX

j,

and V and W are given by

V j := 〈∂u,∇u〉ξj − (H u)∂ju, W j := (H u)∇ju.

Also, R is the Riemann curvature tensor.
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We now take the vertical gradient in (5.8) and obtain

(5.9)

{
∂H u = 0 in SM,

u = 0 on ∂(SM).

Similarly as in the R2 case, we pair this equation against ∂H u, inte-

grate over SM and use the Pestov identity to obtain that∫
SM

[
|H ∂u|2 + divh(V ) + divv(W )−R(∂u, ξ, ξ, ∂u)

]
d(SM) = 0.

Integrating by parts, the divh(V ) term vanishes and the divv(W ) term

gives a positive contribution as in the Euclidean case. One eventually

gets that∫
SM

[
|H ∂u|2 −R(∂u, ξ, ξ, ∂u)

]
d(SM)+(n−1)

∫
SM

|H u|2 d(SM) = 0.

The first term is related to the index form for a geodesic γ = γ( · , x, ξ)
in (M, g), which is given by

I(X,X) :=

∫ τ(x,ξ)

0

(|Dγ̇X|2 −R(X, γ̇, γ̇, X)) dt

for vector fields X on γ with X(0) = X(τ(x, ξ)) = 0. If (M, g) is

simple, or more generally if no geodesic in (M, g) has conjugate points,

then the index form is known to be always nonnegative. This implies

that the first term above is nonnegative, showing that H u = 0 and

u = 0 as required. From (5.8) one obtains that f ≡ 0. �
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