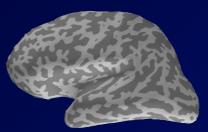
MEG/EEG Source Localization Methods

Matti Hämäläinen



MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging Charlestown, MA, USA

Brain Research Unit Olli V. Lounasmaa Laboratory Aalto University, School of Science Espoo, Finland

Contents

- Introduction to MEG and EEG source estimation
- Current dipole models
- Anatomically and functionally constrained source estimates

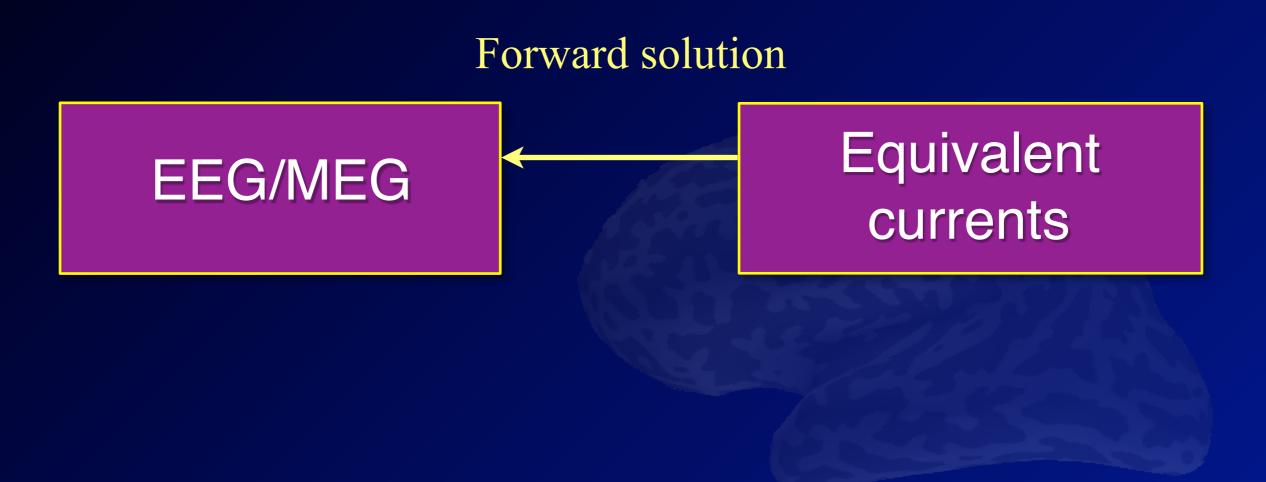
MEG and EEG source estimation

The Inverse Problem

Find the current distribution that generated the measured MEG/EEG

The Inverse Problem

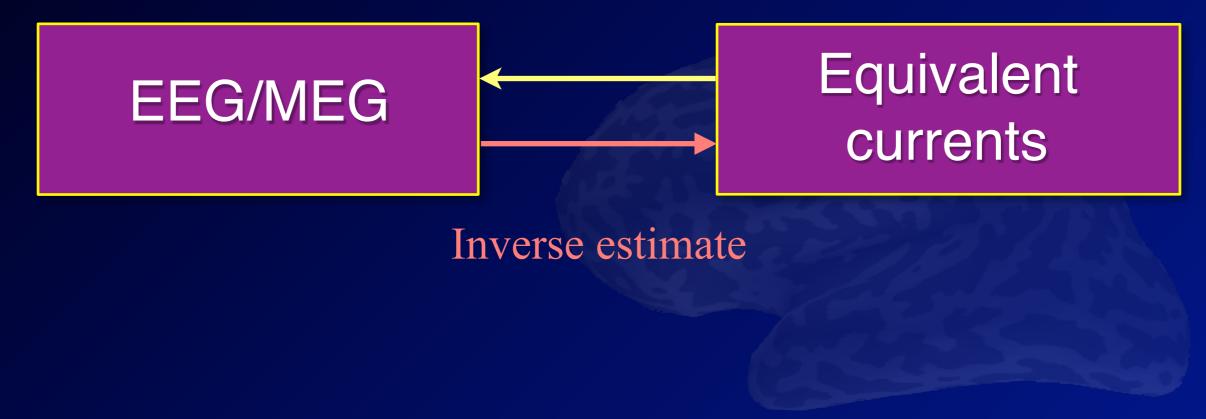
Find the current distribution that generated the measured MEG/EEG

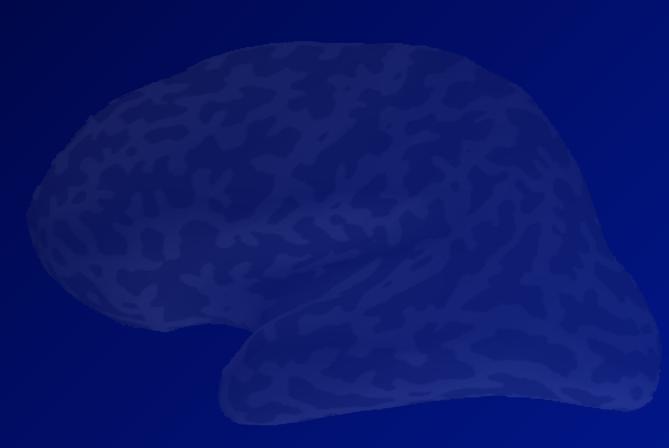


The Inverse Problem

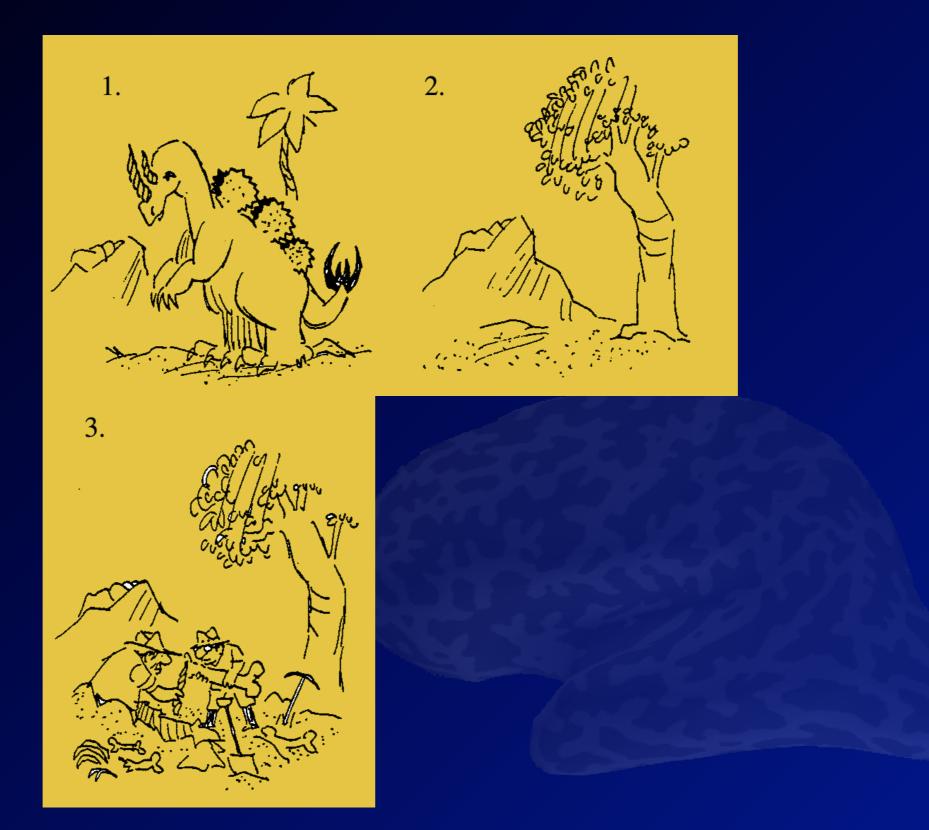
Find the current distribution that generated the measured MEG/EEG

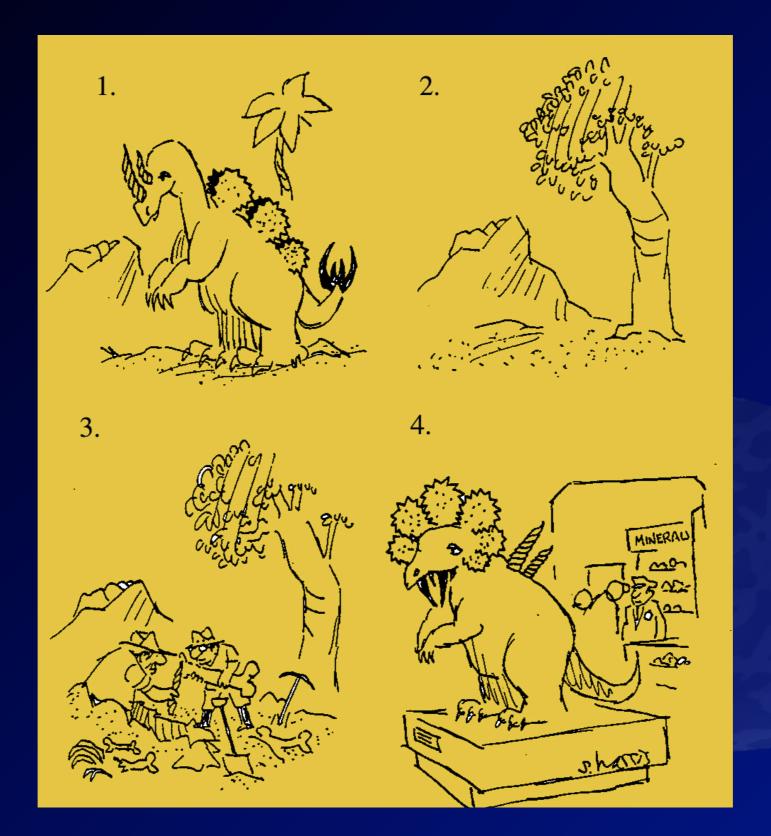
Forward solution



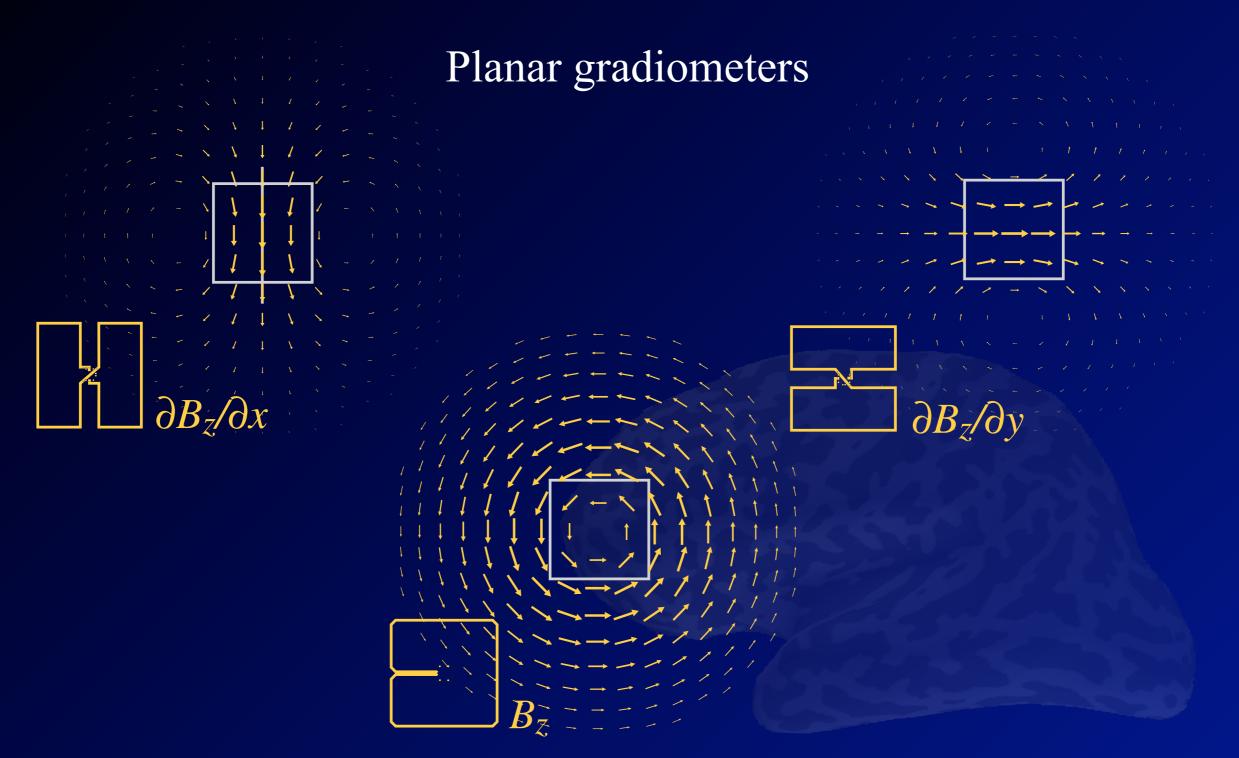








Lead fields



Magnetometer

Cohen, 1979



- An ill-posed problem
 - Many different current distributions can explain the data
 - Solution may be sensitive to noise, *i.e.*, unstable

- An ill-posed problem
 - Many different current distributions can explain the data
 - Solution may be sensitive to noise, *i.e.*, unstable
- Model needed
 - How do we know the model is faithful to the actual current distribution in the brain?
 - A solution can be unique but far from faithful

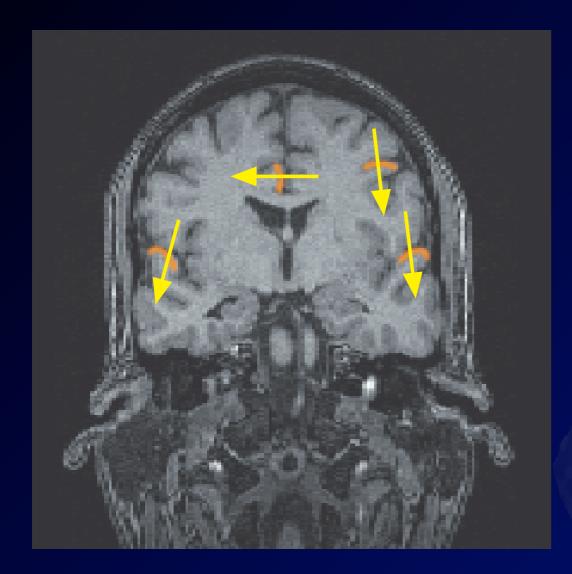
- An ill-posed problem
 - Many different current distributions can explain the data
 - Solution may be sensitive to noise, *i.e.*, unstable
- Model needed
 - How do we know the model is faithful to the actual current distribution in the brain?
 - A solution can be unique but far from faithful
- Additional constraints are useful
 - Major contribution comes from the cortex

- An ill-posed problem
 - Many different current distributions can explain the data
 - Solution may be sensitive to noise, *i.e.*, unstable
- Model needed
 - How do we know the model is faithful to the actual current distribution in the brain?
 - A solution can be unique but far from faithful
- Additional constraints are useful
 - Major contribution comes from the cortex
- Computational challenges
 - How to find the optimal solution once the cost function has been specified?

Current dipole models

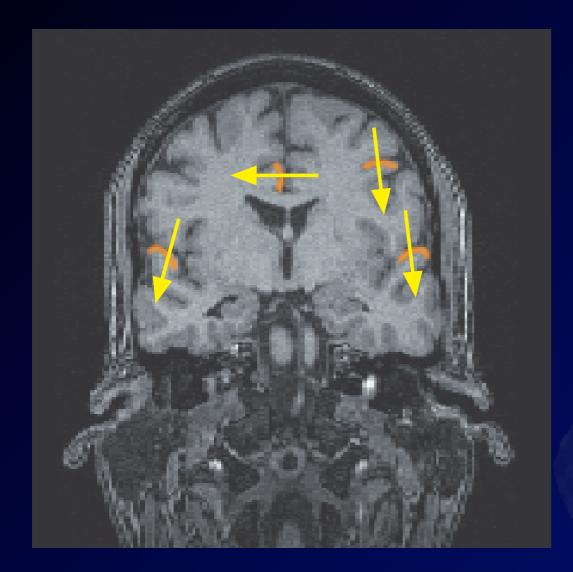


Example: The time-varying current-dipole model



- The neural currents on a few-cm² patch of cortex are approximated with a current dipole
- Dipole locations are fixed over time
- Dipole amplitudes are allowed to vary

Example: The time-varying current-dipole model



- The neural currents on a few-cm² patch of cortex are approximated with a current dipole
- Dipole locations are fixed over time
- Dipole amplitudes are allowed to vary

Scherg et al., 1984

• Data predicted by the forward model + additive zero-mean Gaussian noise with a known spatial covariance matrix:

• Data predicted by the forward model + additive zero-mean Gaussian noise with a known spatial covariance matrix:

$$\mathbf{B} = \mathbf{G}\mathbf{Q} + \mathbf{N} = \sum_{p=1}^{T} \mathbf{g}_p(\vec{r_p}, \hat{e}_p)\mathbf{q}_p^T + \mathbf{N}$$

• Data predicted by the forward model + additive zero-mean Gaussian noise with a known spatial covariance matrix:

$$\mathbf{B} = \mathbf{G}\mathbf{Q} + \mathbf{N} = \sum_{p=1}^{r} \mathbf{g}_{p}(\vec{r}_{p}, \hat{e}_{p})\mathbf{q}_{p}^{T} + \mathbf{N}$$
produced by unit

Data produced by unit dipoles at known locations

• Data predicted by the forward model + additive zero-mean Gaussian noise with a known spatial covariance matrix:

$$\mathbf{B} = \mathbf{G}\mathbf{Q} + \mathbf{N} = \sum_{p=1}^{r} \mathbf{g}_{p}(\vec{r}_{p}, \hat{e}_{p})\mathbf{q}_{p}^{T} + \mathbf{N}$$

is produced by unit

Data produced by unit dipoles at known locations

Dipole locations

Data predicted by the forward model + additive zero-mean ightarrowGaussian noise with a known spatial covariance matrix:

$$\mathbf{B} = \mathbf{G}\mathbf{Q} + \mathbf{N} = \sum_{p=1}^{T} \mathbf{g}_p(\vec{r_p}, \hat{e}_p)\mathbf{q}_p^T + \mathbf{N}$$

produced by unit
t known locations

Data dipoles a

Dipole locations

Dipole orientations

• Data predicted by the forward model + additive zero-mean Gaussian noise with a known spatial covariance matrix:

$$\mathbf{B} = \mathbf{G}\mathbf{Q} + \mathbf{N} = \sum_{p=1}^{T} \mathbf{g}_p(\vec{r}_p, \hat{e}_p)\mathbf{q}_p^T + \mathbf{N}$$

Data produced by unit
dipoles at known locations

Dipole locations

Dipole orientations

Source waveforms

• Data predicted by the forward model + additive zero-mean Gaussian noise with a known spatial covariance matrix:

$$\mathbf{B} = \mathbf{G}\mathbf{Q} + \mathbf{N} = \sum_{p=1}^{T} \mathbf{g}_{p}(\vec{r}_{p}, \hat{e}_{p})\mathbf{q}_{p}^{T} + \mathbf{N}$$
ta produced by unit
at known locations
Dipole locations
Dipole orientations

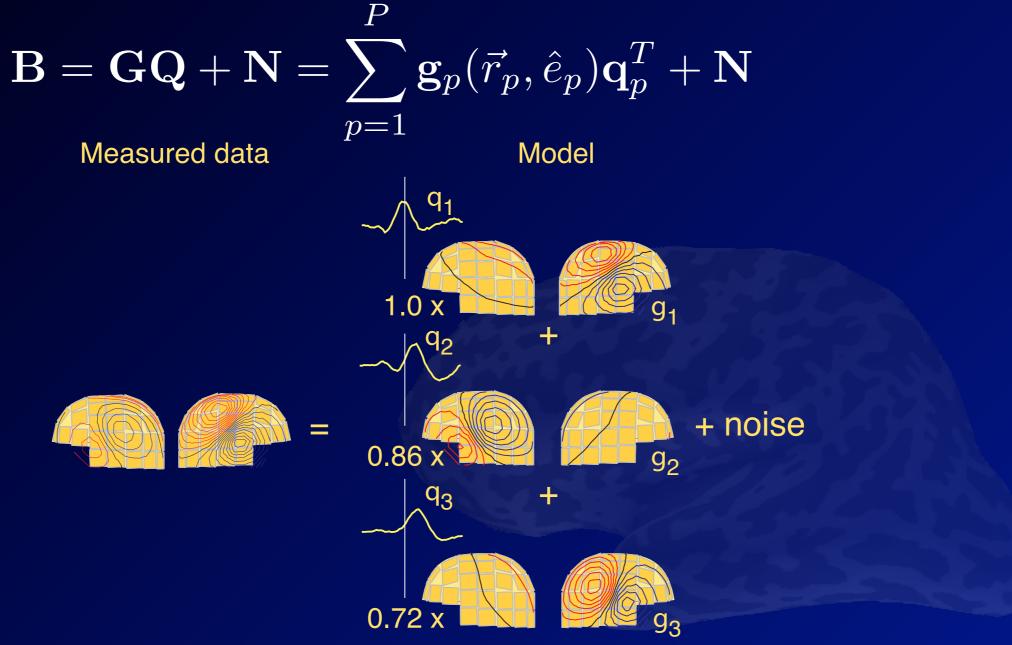
Source waveforms

Noise

Da

dipoles

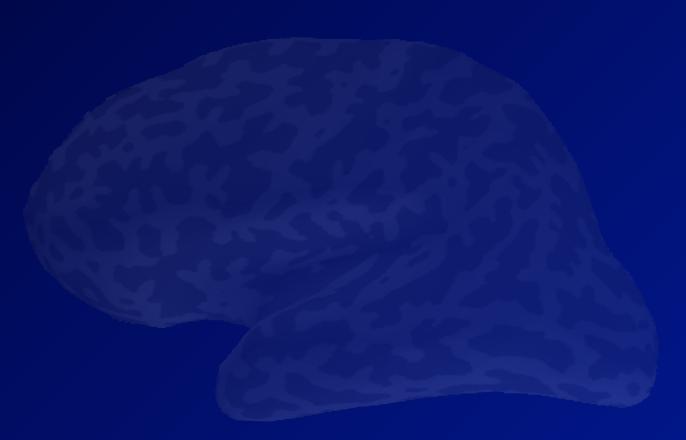
• Data predicted by the forward model + additive zero-mean Gaussian noise with a known spatial covariance matrix:



$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

1. Select the number of dipoles



$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location
- 4. If error is the same as in previous iteration step, STOP

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location
- 4. If error is the same as in previous iteration step, STOP
- 5. Find better candidates for the dipole locations

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location
- 4. If error is the same as in previous iteration step, STOP
- 5. Find better candidates for the dipole locations
- 6. Go back to step 3.

Fitting: Challeges

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

Fitting: Challeges

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

1. Select the number of dipoles

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

Select the number of dipoles Select initial guesses for dipole locations

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location
- 4. If error is the same as in previous iteration step, STOP

$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location
- 4. If error is the same as in previous iteration step, STOP
- 5. Find better candidates for the dipole locations

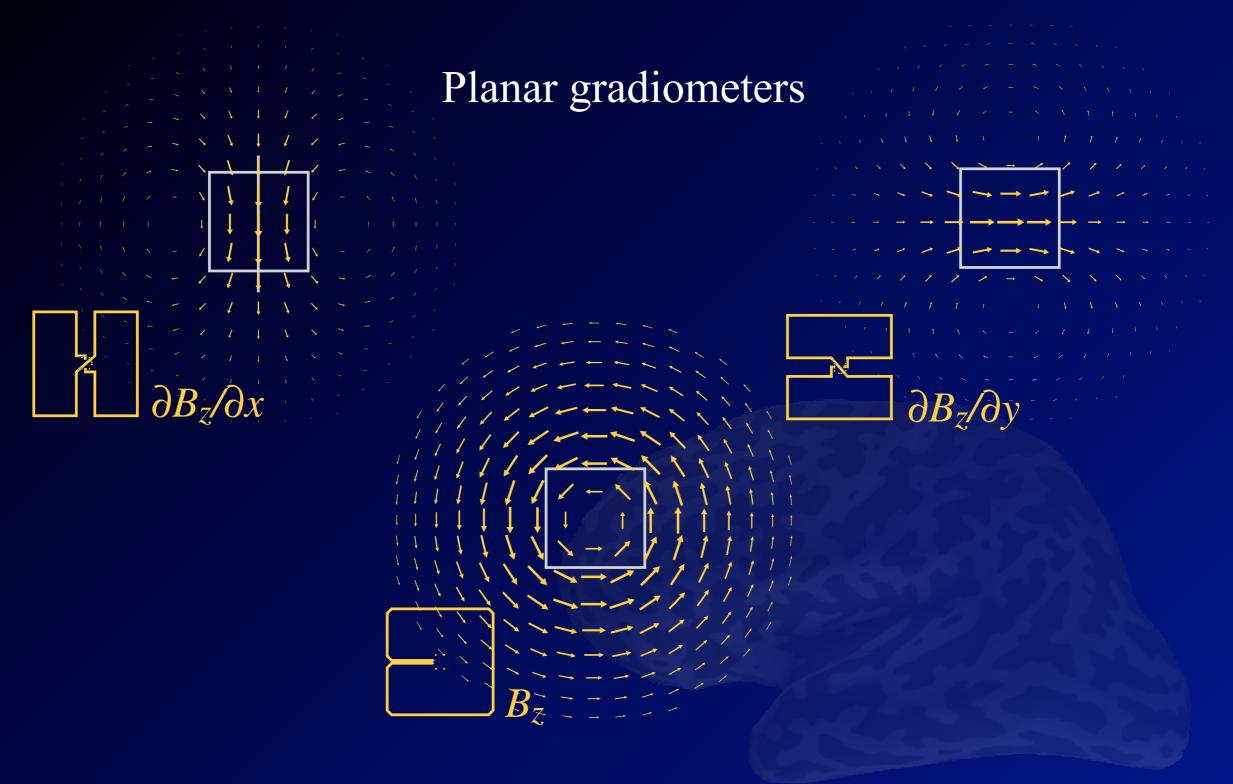
$$\{\hat{\mathbf{q}}_p, \hat{\mathbf{r}}_p\} = \operatorname{argmin}_{\{\mathbf{q}_p, \mathbf{r}_p\}} ||\mathbf{B}_{\text{meas}} - \mathbf{B}_{\text{model}}||^2$$

- 1. Select the number of dipoles
- 2. Select initial guesses for dipole locations
- 3. Calculate the smallest least-squares error between the measurement and the model data achievable by adjusting the dipole orientations and amplitudes at these location
- 4. If error is the same as in previous iteration step, STOP
- 5. Find better candidates for the dipole locations
- 6. Go back to step 3.

Heuristic strategies

- Try to select time points when only one dipole is active
- Use channel selections
- Construct the model dipole-by-dipole

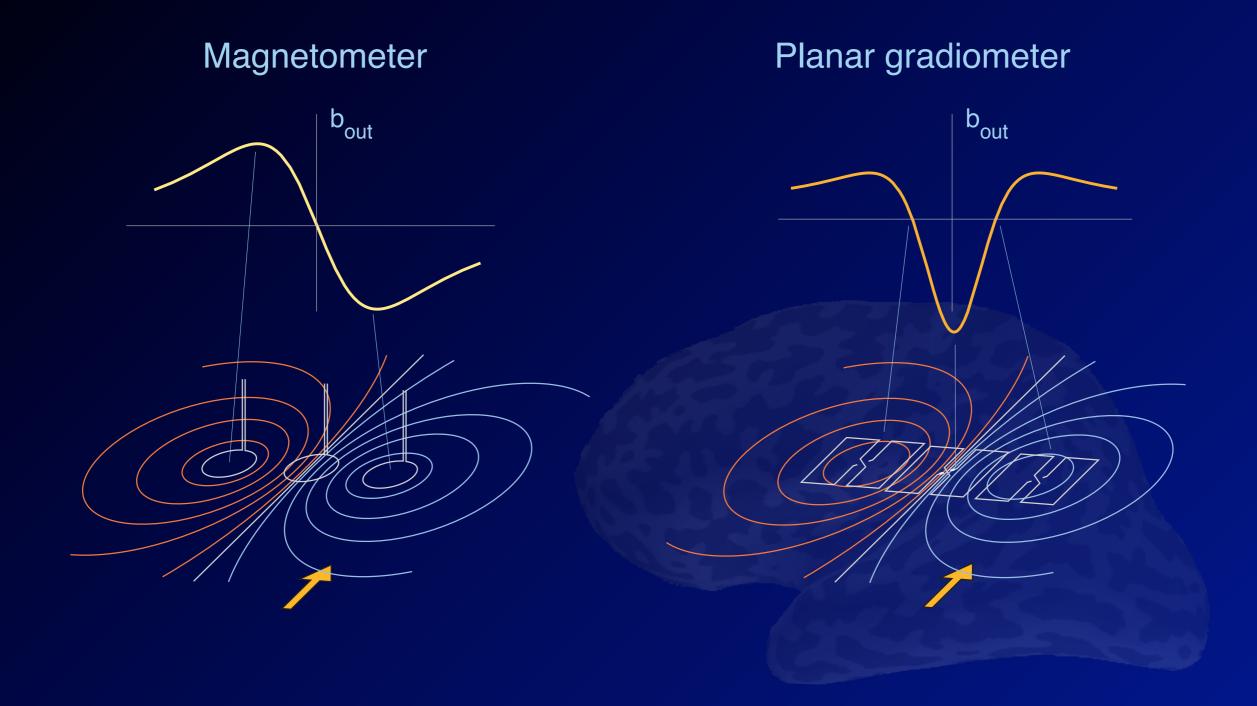
Vectorview sensor triplets (306 = 3 x 102)



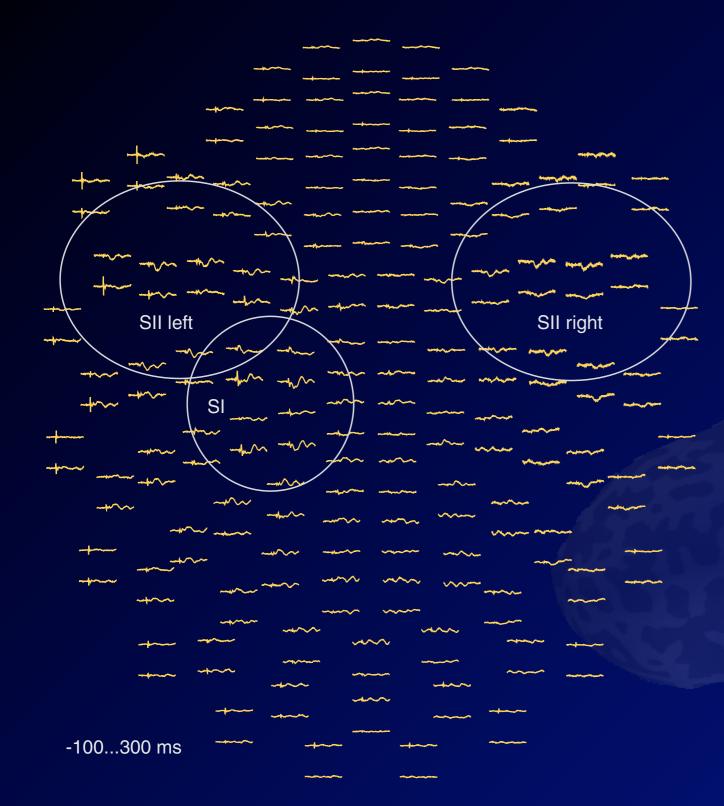
Magnetometer

Cohen, 1979

Magnetometers and planar gradiometers



An example of averaged MEG data

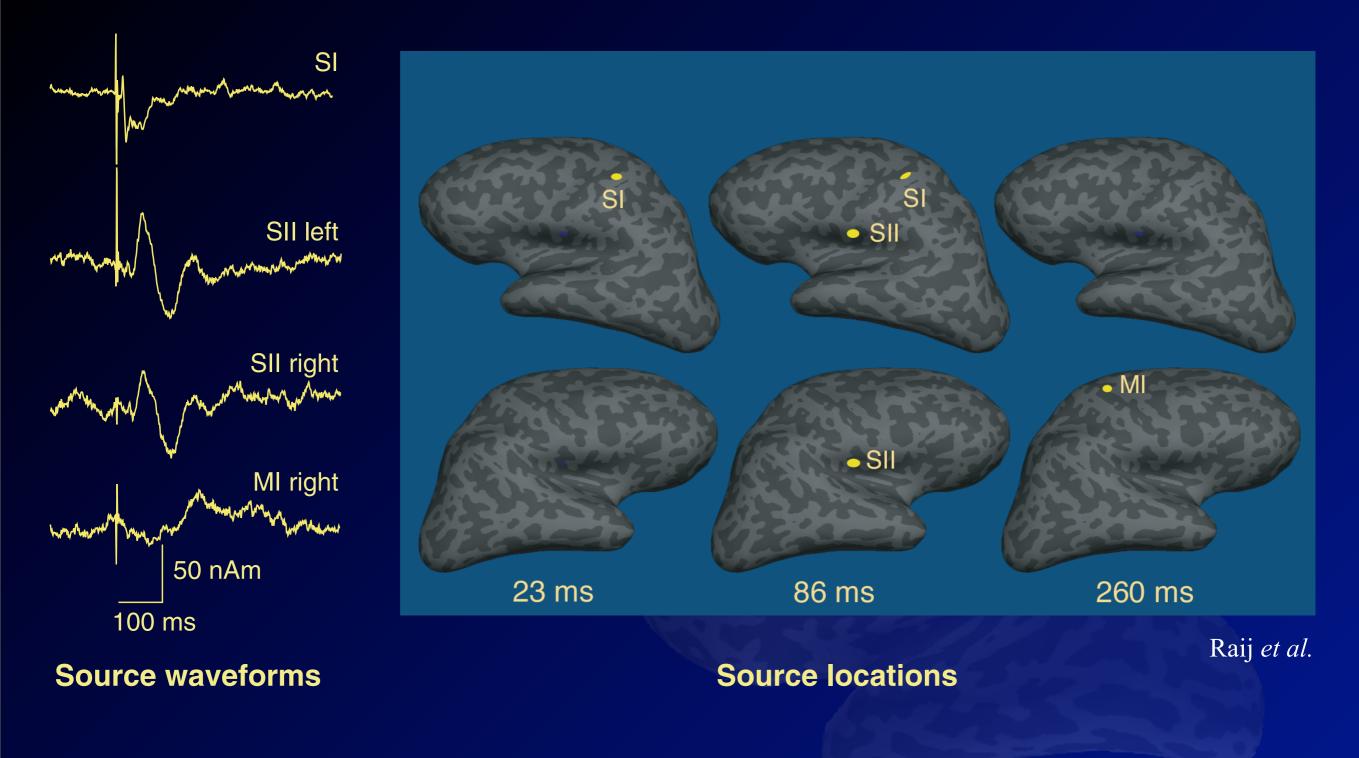


- Somatosensory median nerve data
- Activity expected at least in SI (left) and SII (left and right)

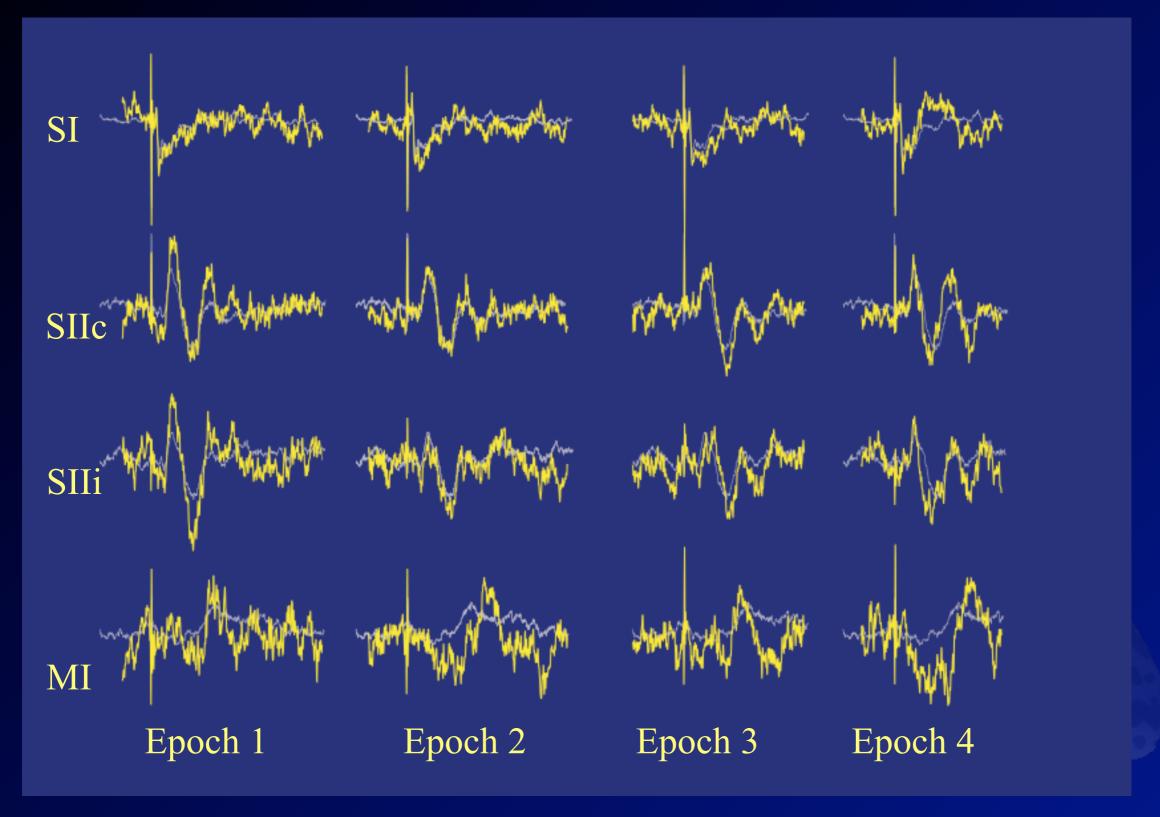
Possible strategy

- Fit SI at an early latency when it is active alone
- Fit the two SII responses using channel selections
- Fine tune SII fitting by keeping SI dipole fixed

Dipole analysis: SEF with a motor task



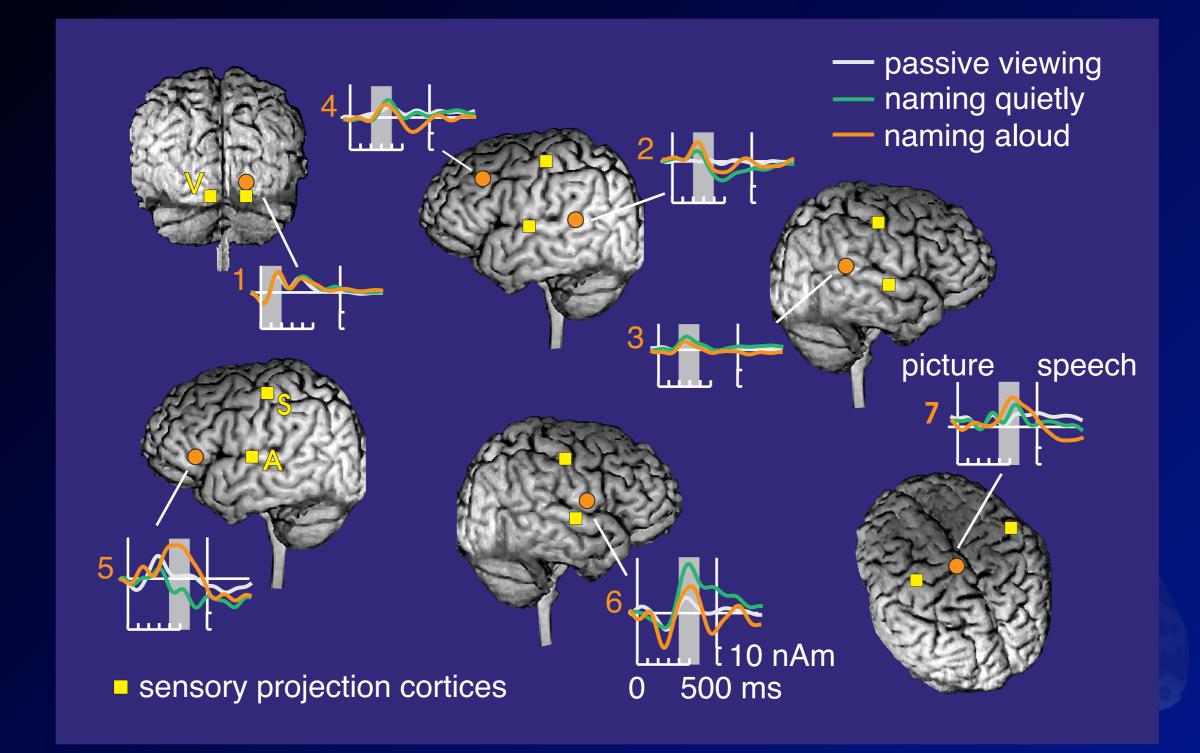
Single-epoch analysis



Matti Hämäläinen 8/2013

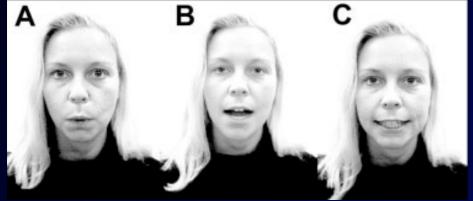
Raij et al.

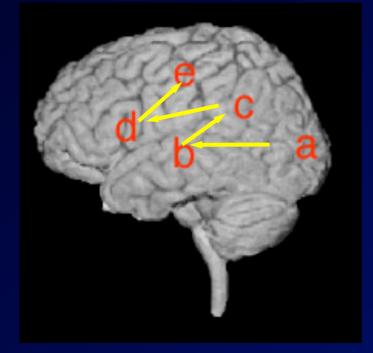
Dynamics of Brain Activation in Picture Naming

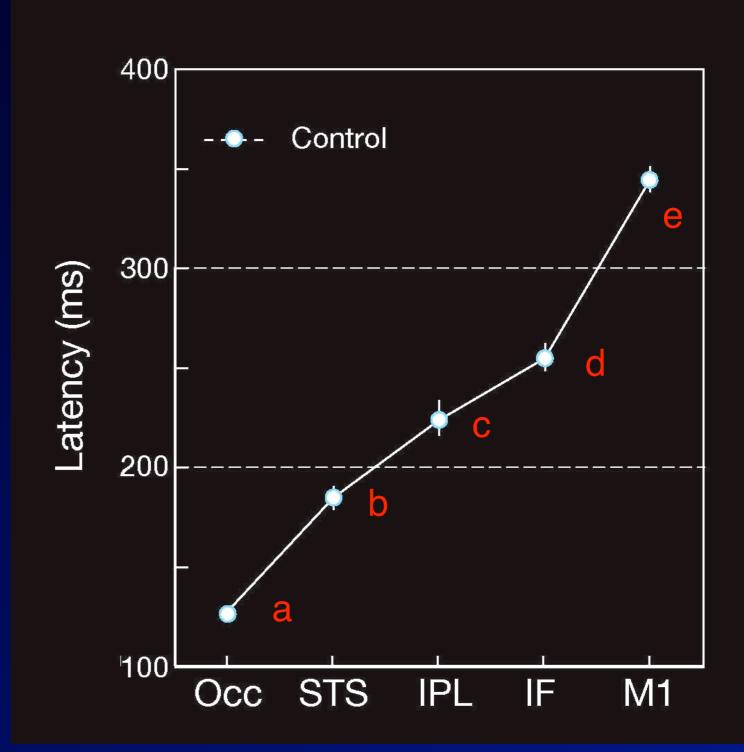


Salmelin et al., Nature 1994

Imitation of orofacial gestures

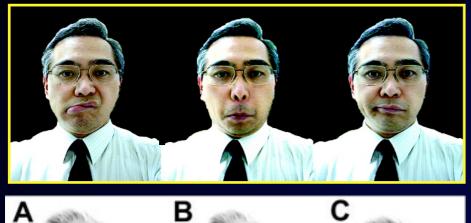


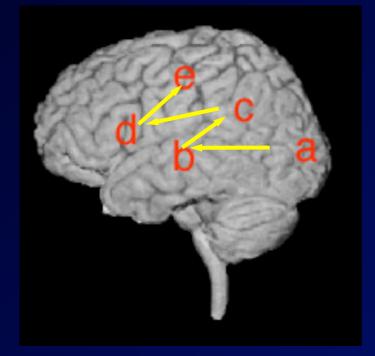


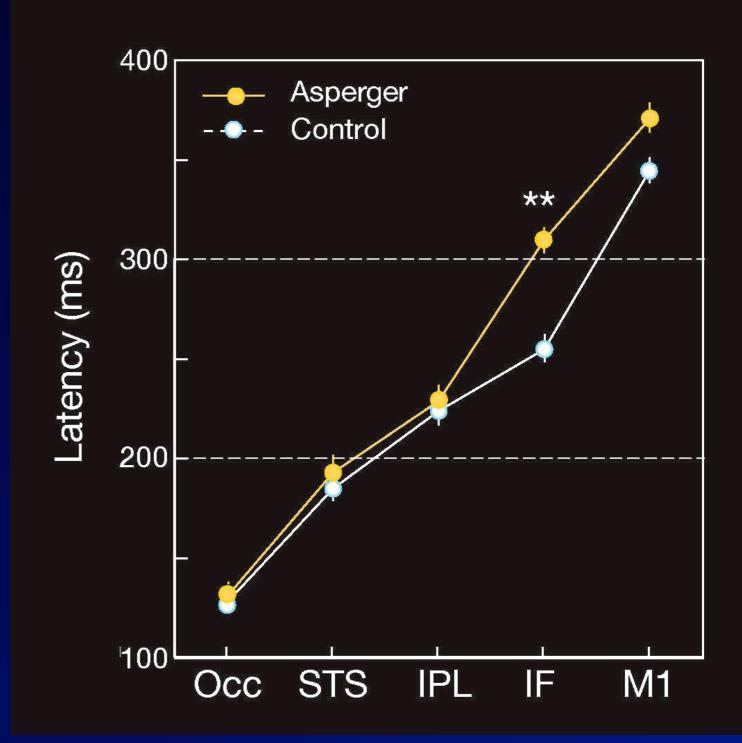


Nishitani & Hari, Neuron 2002; Nishitani et al. Ann Neurol 2004

Imitation of orofacial gestures



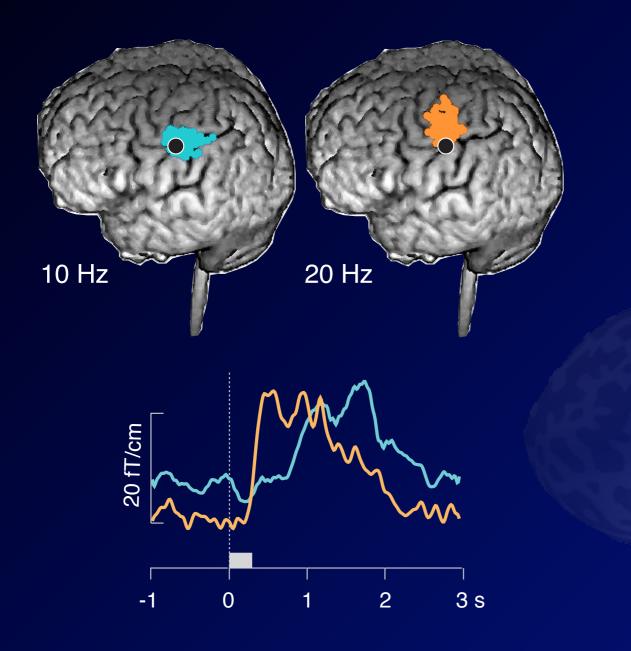




Nishitani & Hari, Neuron 2002; Nishitani et al. Ann Neurol 2004

Spatiotemporal analysis of the somatomotor (m) rhythms

Modulation with finger movements

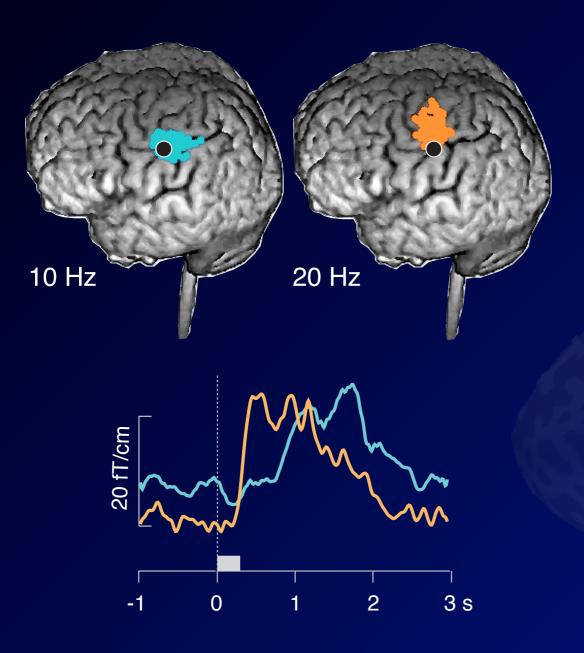


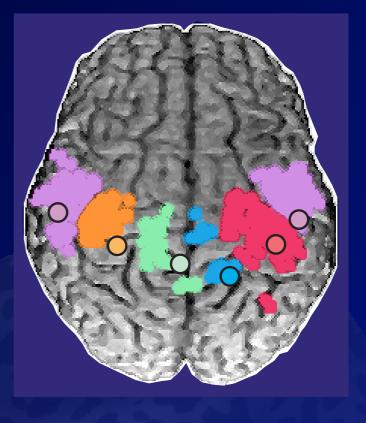
Salmelin et al., NeuroImage, 1995

Spatiotemporal analysis of the somatomotor (m) rhythms

Modulation with finger movements

Homunculus of the 20-Hz component





SEF

- left tibial nerve
- right tibial nerve
- left median nerve
- right median nerve 🗰 right finger
- lip

MOVEMENT

- left toes
- right toes
- left finger
- mouth

Salmelin et al., NeuroImage, 1995

Dipole models: caveats

- It is difficult to find the optimal dipole locations automatically:
 - Heuristics: Build the model one dipole at a time
 - Genetic algorithms: Find the global minimum
 - Multistart simplex: Perform a lot of fits with different initial guesses
 - MUSIC algorithms: Possible to scan one dipole at a time
- The least-squares solution might not be closest to the truth
- Sources might be too extended to be represented by a dipole

Anatomically and functionally constrained source estimates

Motivation to use distributed source models

- Account for non-focal (extended) sources
- Automatic analysis without heuristic choices often needed in multidipole models
- Incorporate anatomical and functional MRI constraints
- Lower SNR data can be processed
- If the estimate is linear the data any signal processing can be applied in the source space
- Surface or volume based group averaging can be employed

Minimum-Norm Solutions

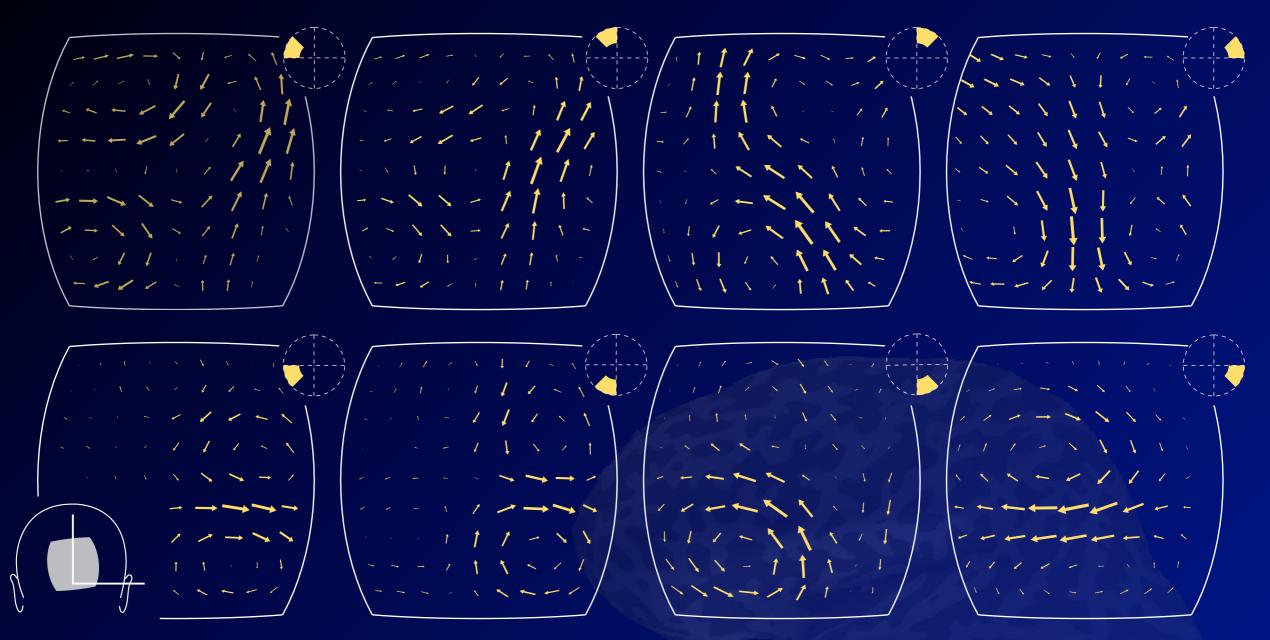
- Grid of dipoles in a volume or on a surface
- Underdetermined: n_{sources} » n_{meas}
- Find an optimal solution among those fitting the data

$$\hat{\mathbf{q}} = \operatorname{argmin}_{\mathbf{q}} \left(||\mathbf{y} - \mathbf{G}\mathbf{q}||_{\mathbf{C}}^{2} + ||\mathbf{q}||_{\mathbf{R}}^{p} \right)$$

Examples:

Minimum-norm estimates (MNE): p = 2
LORETA: p = 2, R = Laplacian operator
Minimum-current estimates (MCE): p = 1

Retinotopic mapping with MNE



MEG array

Peripheral checkerboard octant stimuli, t = 80 ms

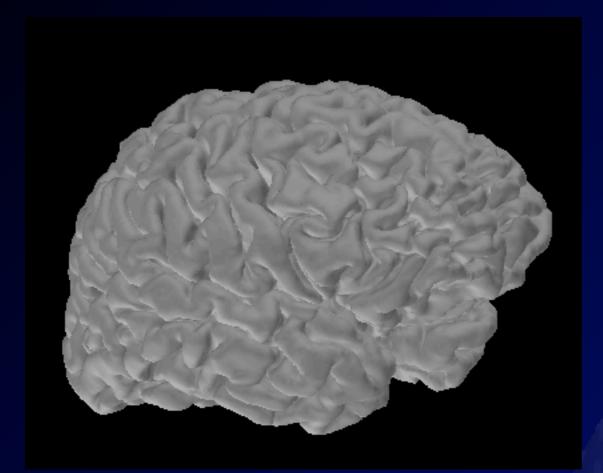
Ahlfors et al. 1992

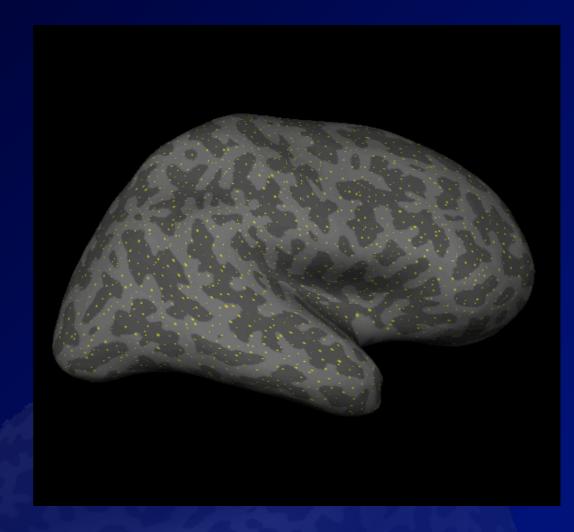
Modern MNE

- Source locations (and orientations) constrained to the cortical mantle
- Forward solution with BEM
- Full noise-covariance matrix estimates computed from raw data
- Display on an inflated cortex to reveal the sulci
- Compute statistics
- Combined MEG and EEG solutions
- fMRI-guided solutions

28

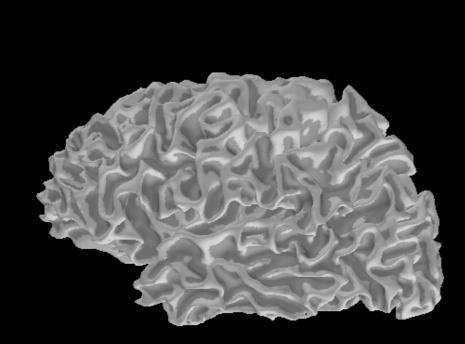
Cortical Source Location Constraints





Tessellation of the cortex: Source location and orientation information For source estimation, the surface is typically decimated, resulting in 6000 - 10000 source locations

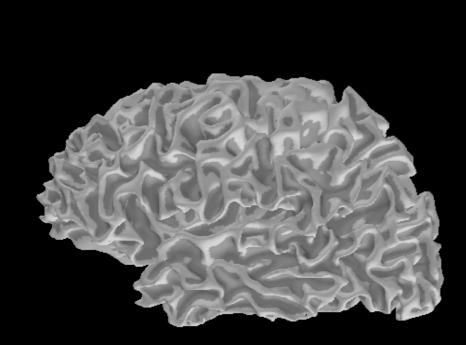
Inflated Cortex



No data loaded.

Topologically correct tessellation can be inflated

Inflated Cortex

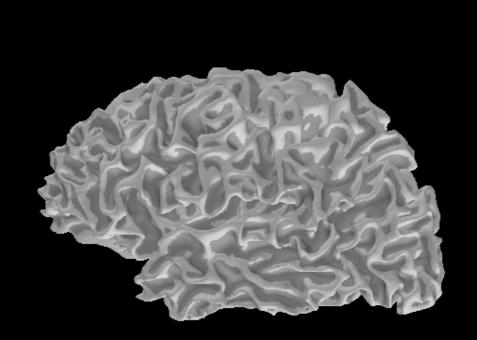


No data loaded.

Topologically correct tessellation can be inflated

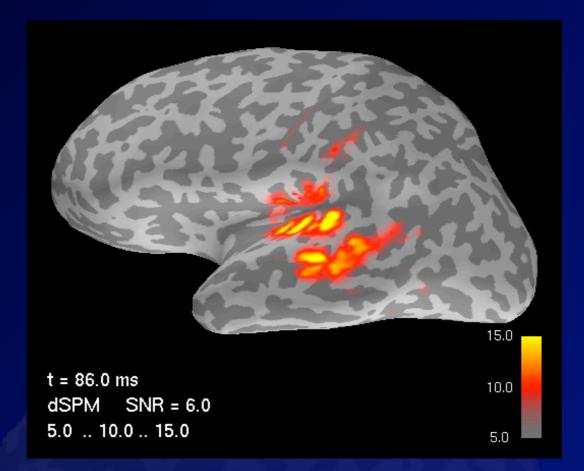
Dale, Fischl, Sereno et al.

Inflated Cortex



No data loaded.

Topologically correct tessellation can be inflated



Dale, Fischl, Sereno et al.

Inflation to a Sphere and Registration Individual

Inflation to a Sphere and Registration

Individual

Aligned with average brain

Align sulcal patterns

to the average brain

Inflation to a Sphere and Registration

Individual

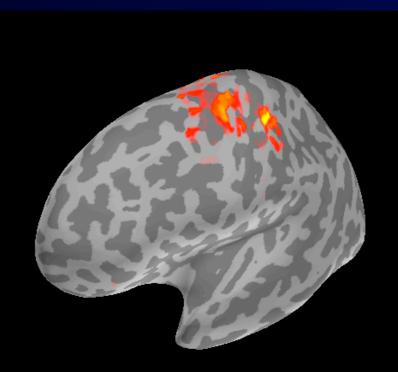
Aligned with average brain



MEG activity estimate

Align sulcal patterns

to the average brain



Inflation to a Sphere and Registration

Individual

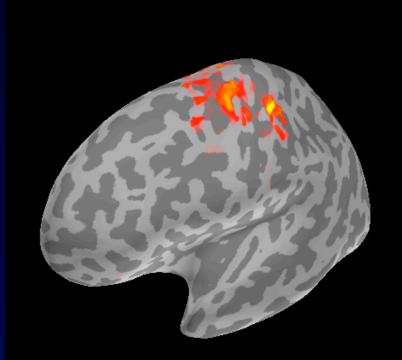
Aligned with average brain

MEG activity estimate

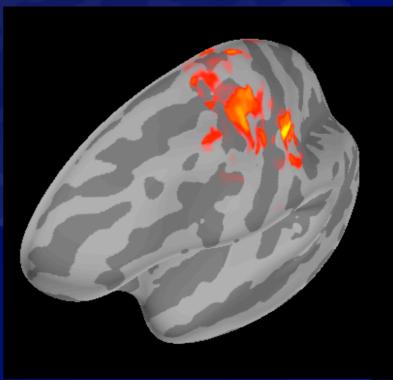
Align sulcal patterns

to the average brain

Mapped to the average brain



Morph



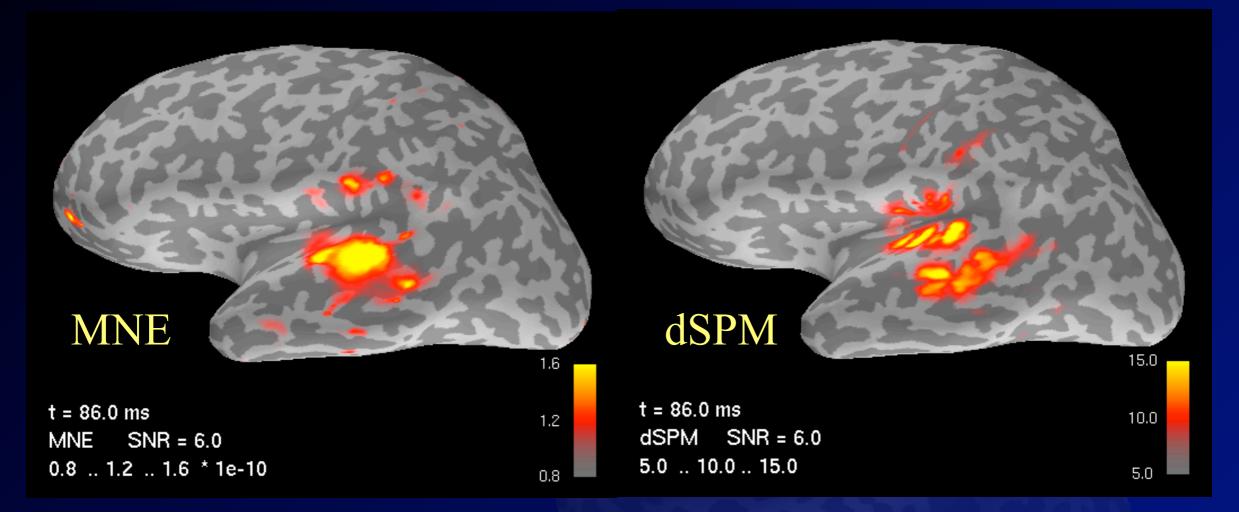
Noise normalization

- Convert the current values into a test statistic
 - dSPM (Dale *et al.*)
 - sLORETA (Pascual-Marqui et al.)
- Divide the current with its standard deviation
- Analyze MEG/EEG data like fMRI or PET

Dale et al. 2000

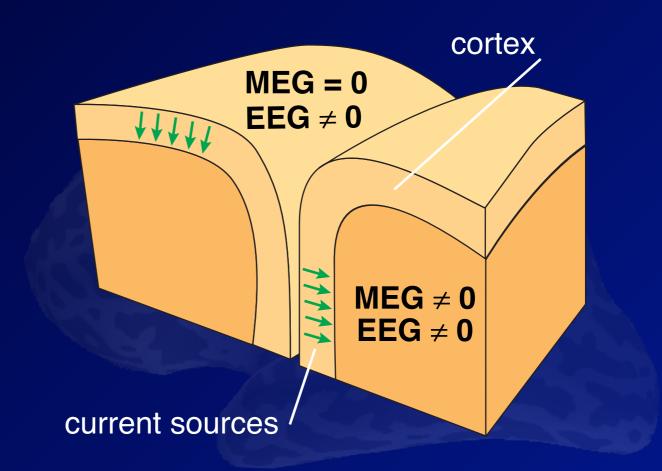
Tuesday, August 13, 2013

MNE and dSPM



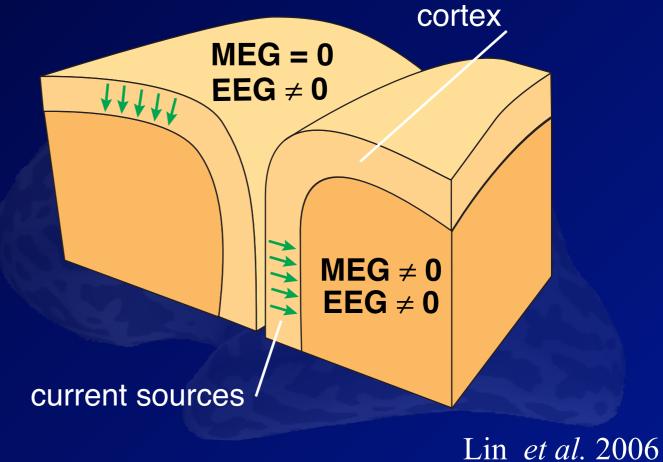
- Auditory MEG data
- Source locations constrained to the cortex
- No orientation constraint
- dSPM and sLORETA produce very similar results with real data

Loose orientation constraint

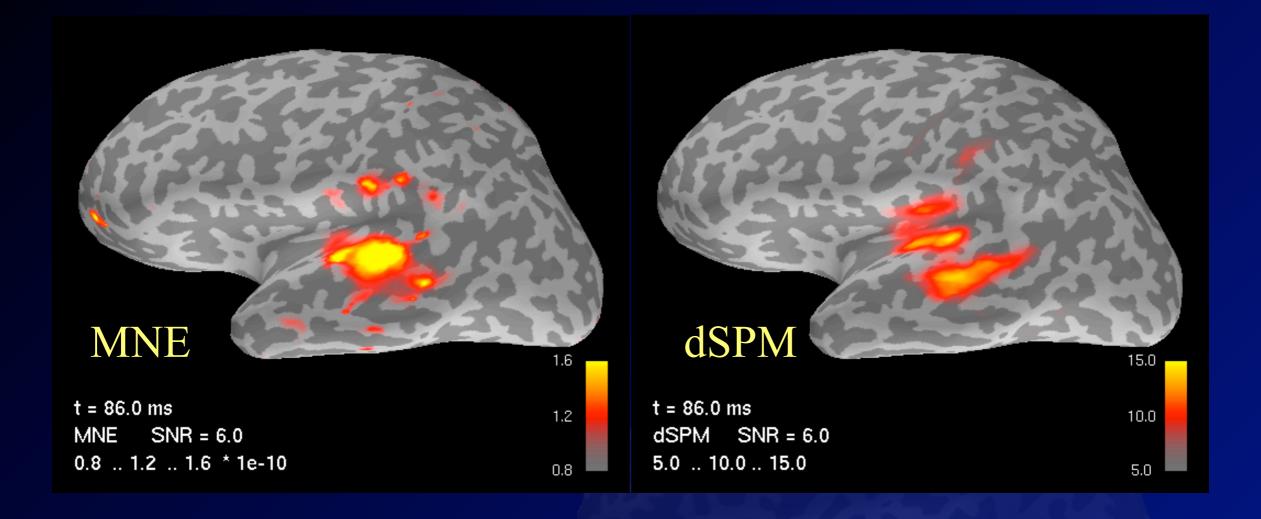


Loose orientation constraint

- Penalize current components tangential to the cortex
- Takes the finite spacing between elementary sources into account

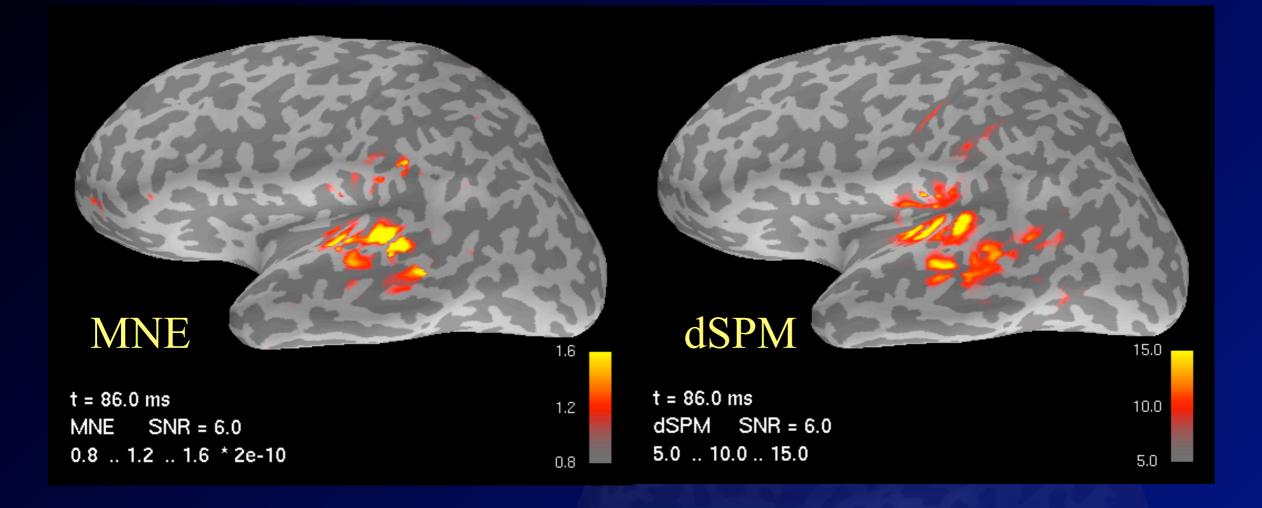


Effect of the orientation constraint

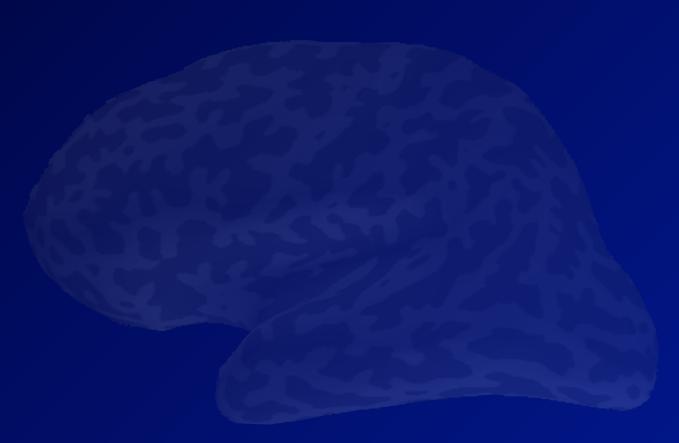


- Auditory responses to short tones
- Depth-weighted MNE and dSPM
- Without and with loose orientation constraint
- The orientation constraint rules out infeasible sources

Effect of the orientation constraint



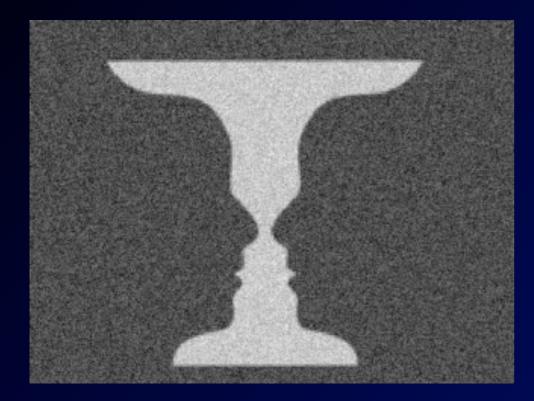
- Auditory responses to short tones
- Depth-weighted MNE and dSPM
- Without and with loose orientation constraint
- The orientation constraint rules out infeasible sources



Matti Hämäläinen 8/2013

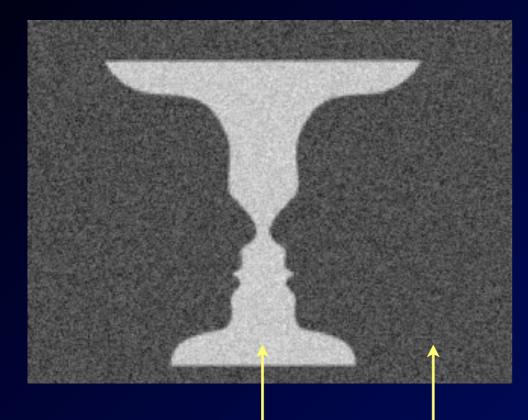
Parkkonen *et al.*, PNAS, 2008 36

Tuesday, August 13, 2013



Matti Hämäläinen 8/2013

Parkkonen *et al.*, PNAS, 2008 36

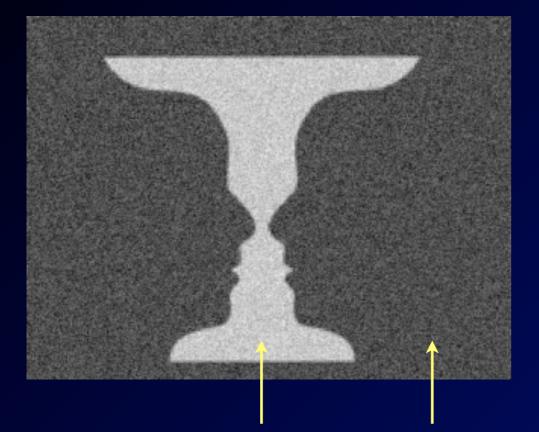


Noise: 12 Hz 15 Hz

Matti Hämäläinen 8/2013

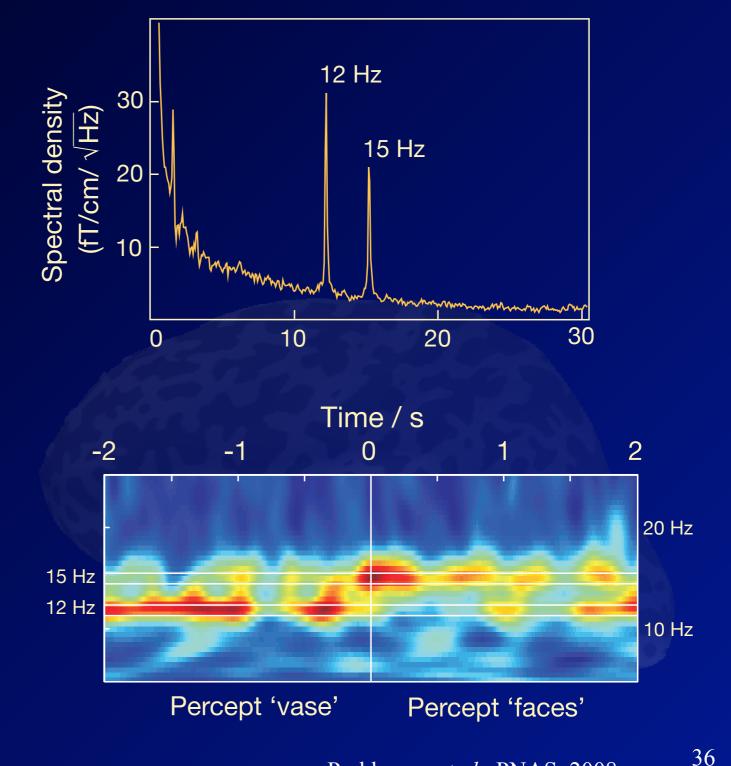
Parkkonen *et al.*, PNAS, 2008 36

Tuesday, August 13, 2013



Noise: 12 Hz 15 Hz

MEG signals at an occipital sensor

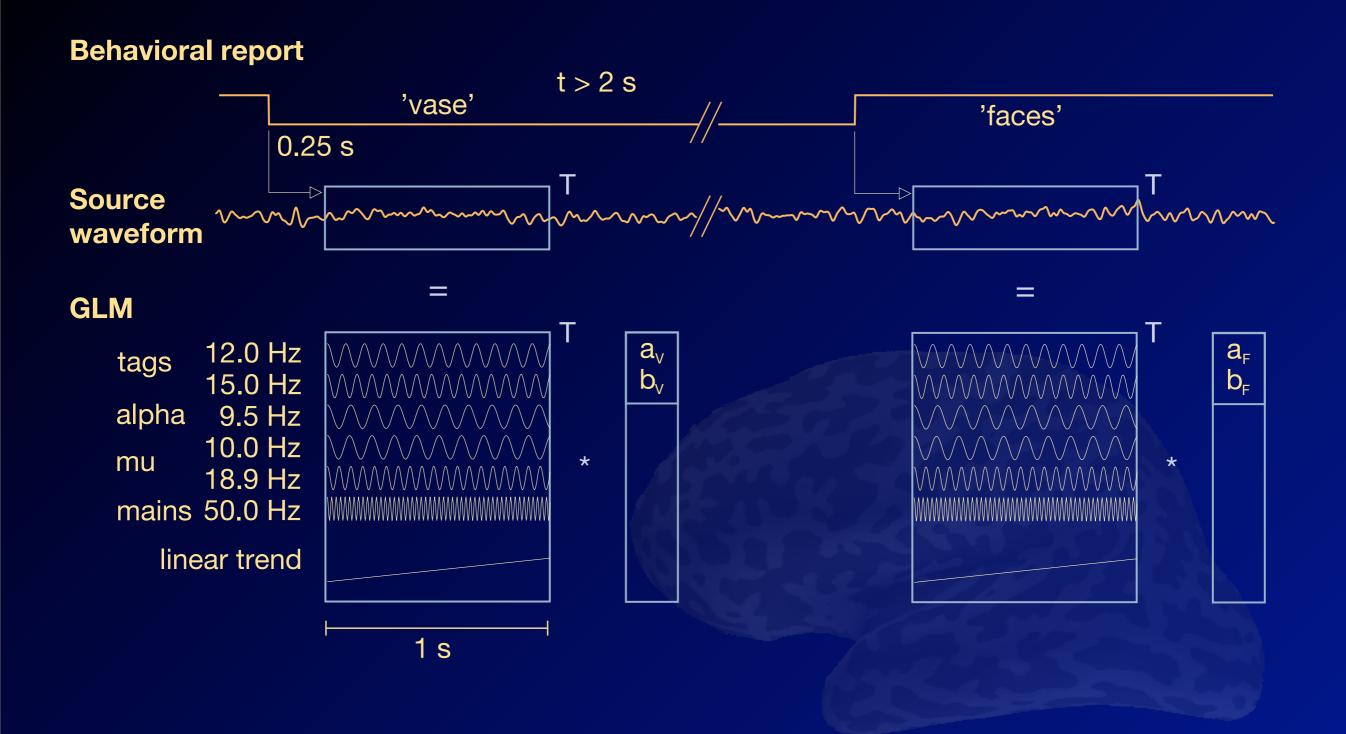


Matti Hämäläinen 8/2013

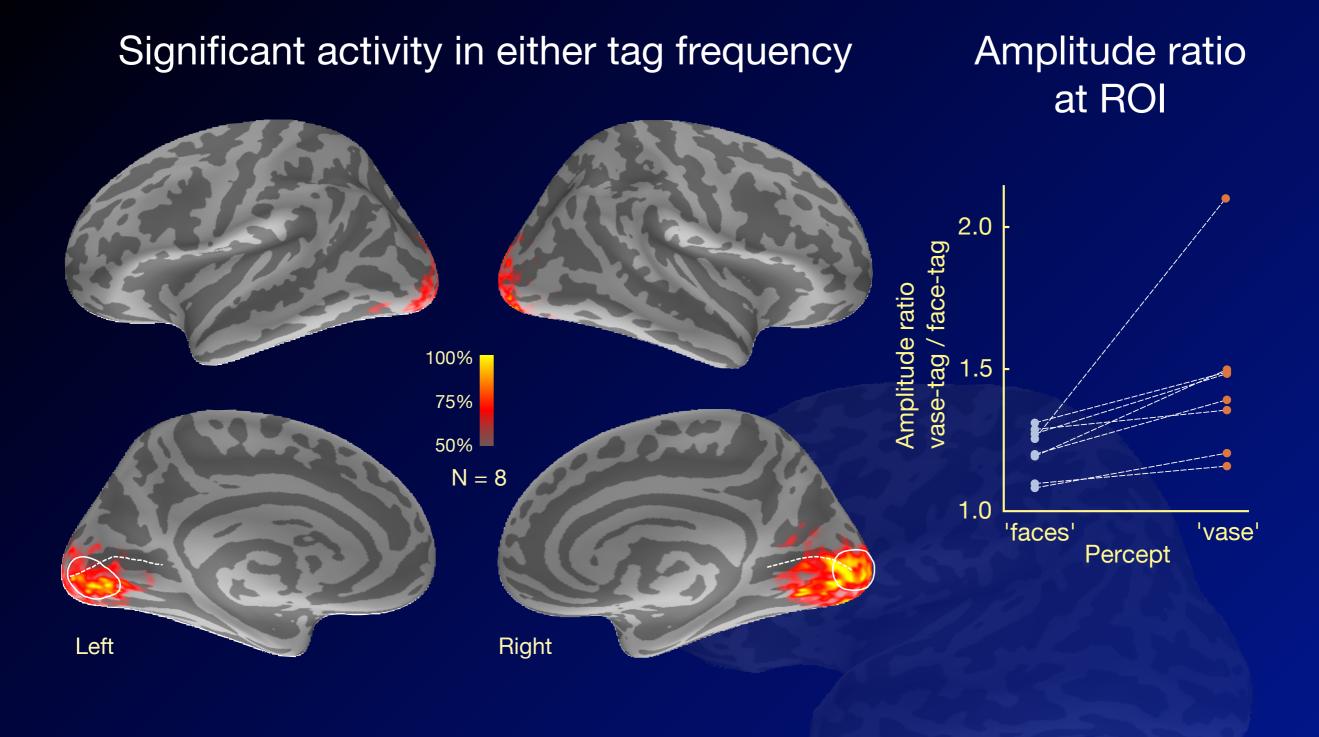
Parkkonen et al., PNAS, 2008

Tuesday, August 13, 2013

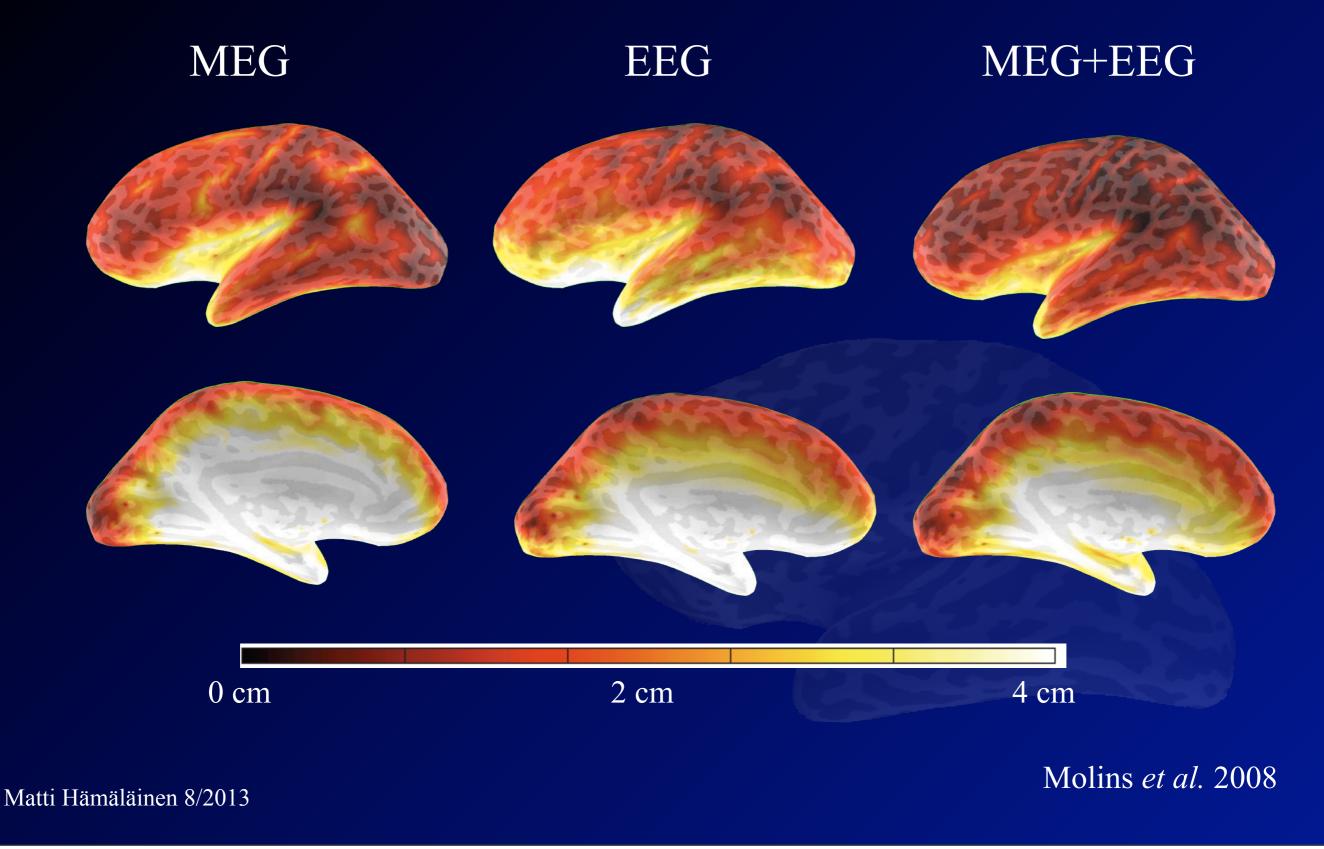
Extract tag-related activity: MNE + GLM



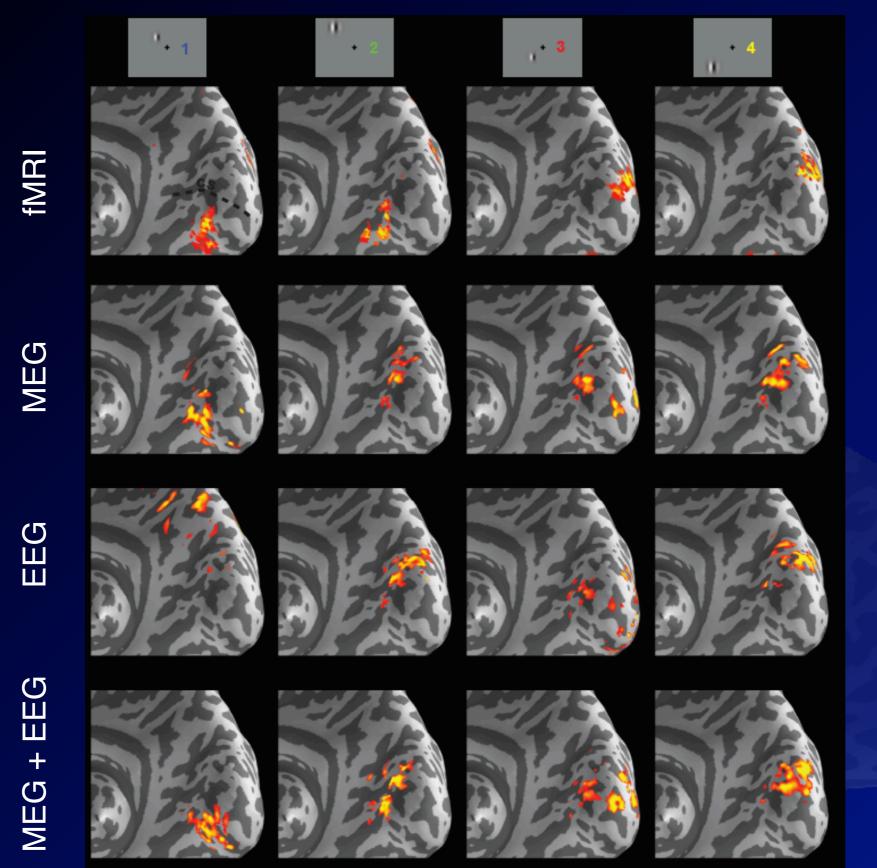
Group analysis



Spatial dispersion of cortically-constrained MEG and EEG source estimates

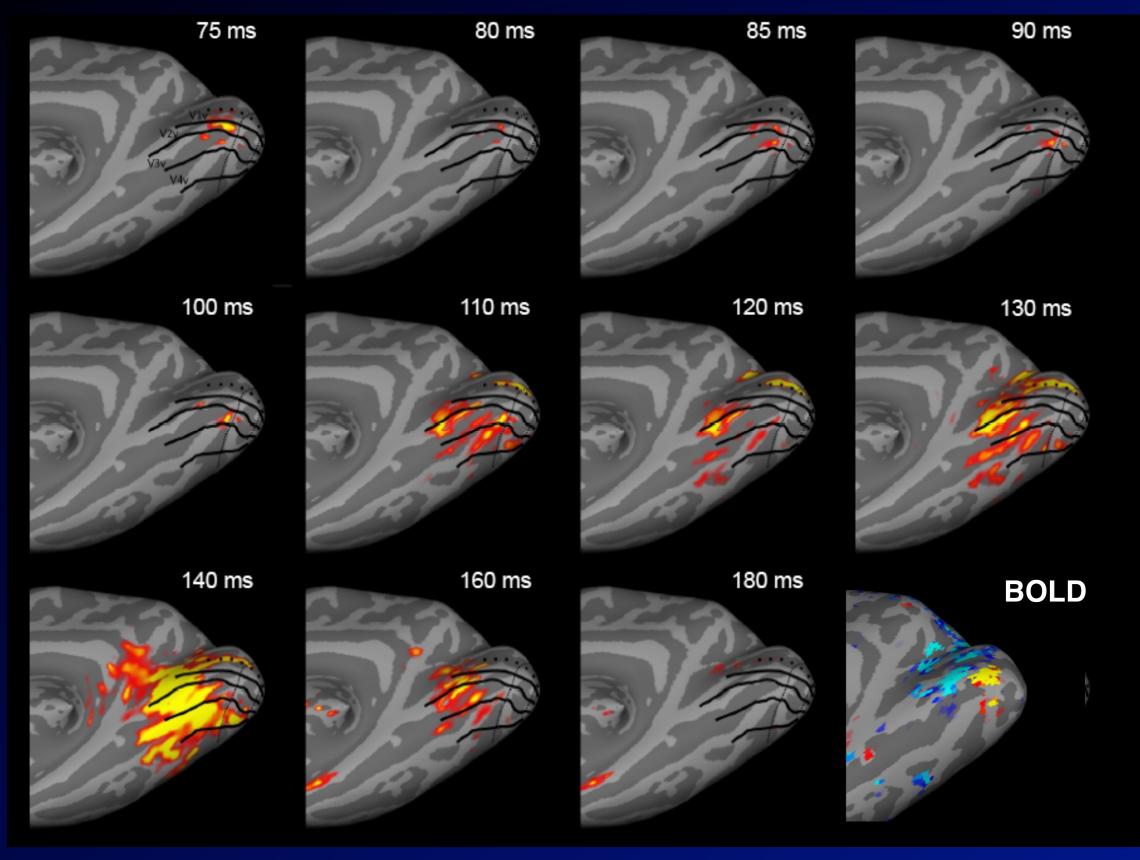


Comparison of MEG, EEG, and fMRI (dSPM)



MattiSHanoäläineh 8020713

MEG/EEG response dynamics

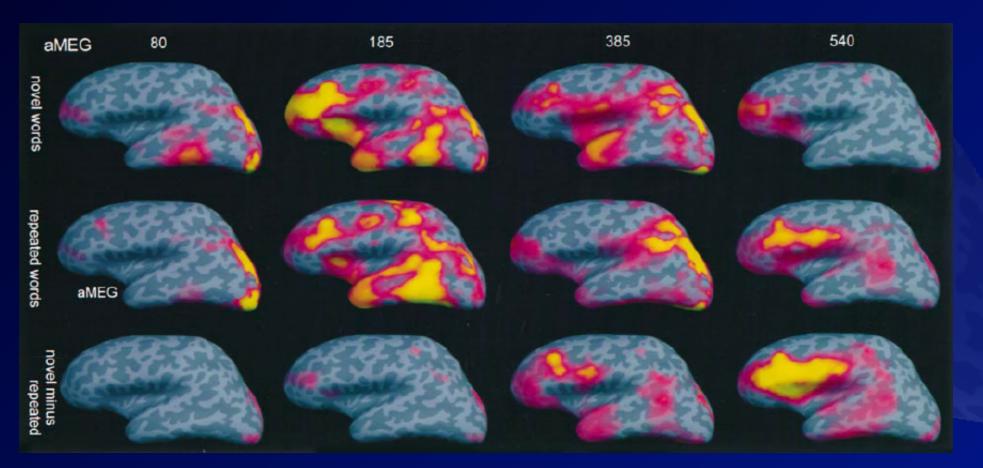


fMRI-guided estimates

- Prioritize locations of significant fMRI activity (increase source variance)
- fMRI incorporated as a constraint, not an integrated analysis procedure

fMRI-guided estimates

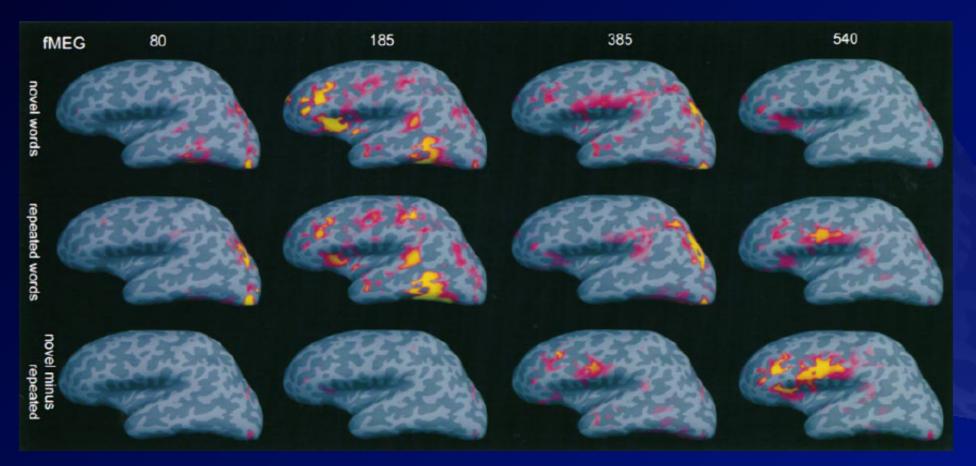
- Prioritize locations of significant fMRI activity (increase source variance)
- fMRI incorporated as a constraint, not an integrated analysis procedure



Dale *et al.* 2000

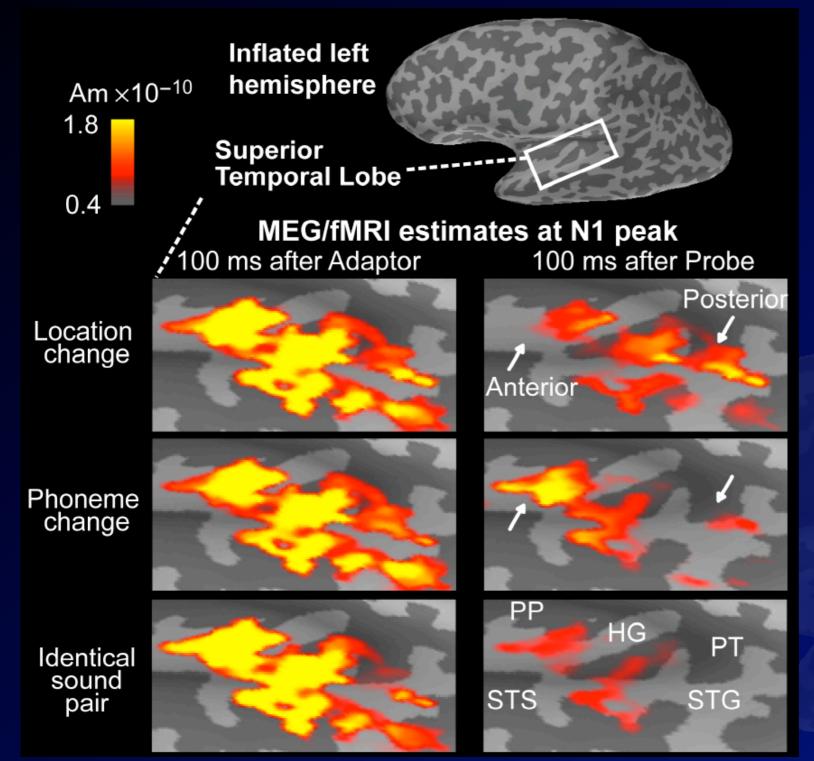
fMRI-guided estimates

- Prioritize locations of significant fMRI activity (increase source variance)
- fMRI incorporated as a constraint, not an integrated analysis procedure



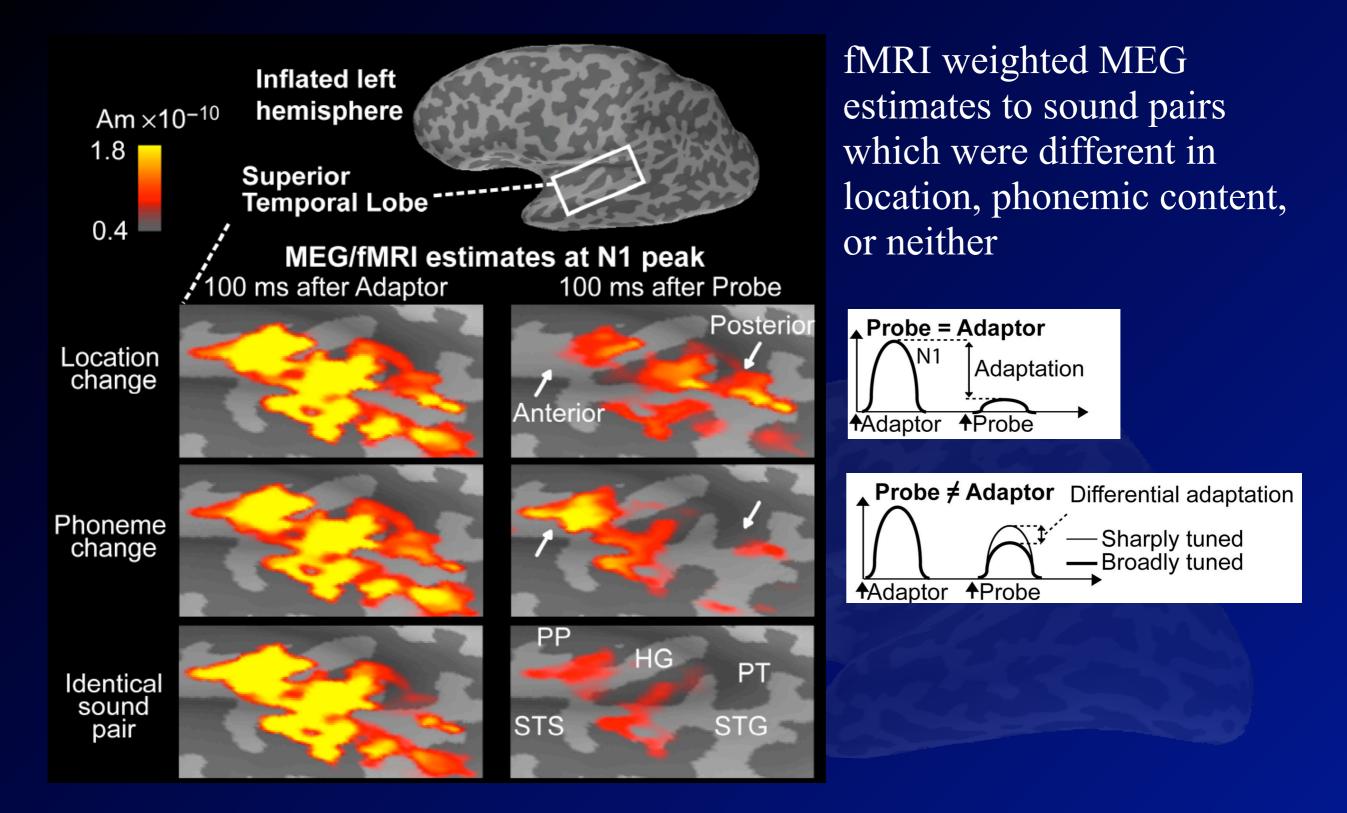
Dale *et al.* 2000

What and Where pathways in the auditory cortex



fMRI weighted MEG estimates to sound pairs which were different in location, phonemic content, or neither

What and Where pathways in the auditory cortex



MEG/EEG and fMRI: Similarities and differences

- An ill-posed inverse problem is not involved in fMRI analysis: better spatial resolution
- MEG/EEG have an exquisite temporal resolution
- Both fMRI and MEG/EEG are most likely related to LFPs measured at the microscopic level
- Synchronous activity has an overwhelming contribution to MEG/EEG
- fMRI is an indirect measure of brain activity:
 - Transient changes may remain undetected
 - Sustained weak activity may be more easily detectable
- fMRI does not suffer from cancellation related to different source orientations

Why both MEG and EEG?

- Sources at the periphery of the sensor arrays can be estimated better when both modalities are available
- Different cancellation properties for multiple focal sources and extended source patches
- Missing signal in one modality is valuable information for the interpretation of the other
- Initial combined MEG/EEG experiments can provide valuable guidelines for further singlemodality (MEG or EEG) large-cohort or clinical studies

Seppo Ahlfors Jack Belliveau Anders Dale (UCSD) Bruce Fischl Polina Golland (MIT/CSAIL) Riitta Hari (HUT) Fa-Hsuan Lin Maria Mody Antonio Molins Wanmei Ou (MIT/CSAIL) Lauri Parkkonen (HUT) Tommi Raij Bruce Rosen Riitta Salmelin (HUT) Dahlia Sharon (Stanford) Daniel Wehner **Thomas Witzel**

www.nmr.mgh.harvard.edu

Thank you!