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Lead fields

6Magnetometer

Planar gradiometers

Cohen, 1979
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• An ill-posed problem
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• An ill-posed problem
– Many different current distributions can explain the data
– Solution may be sensitive to noise, i.e., unstable

• Model needed
– How do we know the model is faithful to the actual current 

distribution in the brain?
– A solution can be unique but far from faithful

• Additional constraints are useful
– Major contribution comes from the cortex

• Computational challenges
– How to find the optimal solution once the cost function has 

been specified?
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Example: The time-varying 
current-dipole model

• The neural currents on a 
few-cm2 patch of cortex are 
approximated with a 
current dipole

• Dipole locations are fixed 
over time

• Dipole amplitudes are 
allowed to vary
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Model for the measurement

• Data predicted by the forward model + additive zero-mean 
Gaussian noise with a known spatial covariance matrix:
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T
p + N

Tuesday, August 13, 2013



Matti Hämäläinen 8/2013

Model for the measurement

• Data predicted by the forward model + additive zero-mean 
Gaussian noise with a known spatial covariance matrix:

10

Data produced by unit
dipoles at known locations

Source waveforms

Dipole locations 

Dipole orientations

Noise

B = GQ + N =
P∑

p=1

gp(!rp, êp)q
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Model for the measurement

• Data predicted by the forward model + additive zero-mean 
Gaussian noise with a known spatial covariance matrix:
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T
p + N

Tuesday, August 13, 2013



Matti Hämäläinen 8/2013

Fitting

11

{q̂p, r̂p} = argmin{qp,rp}||Bmeas �Bmodel||2
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Heuristic strategies

• Try to select time points when only one dipole is 
active

• Use channel selections
• Construct the model dipole-by-dipole

13
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Vectorview sensor triplets (306 = 3 x 102)

14
Magnetometer

Planar gradiometers

Cohen, 1979
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Magnetometers and planar gradiometers
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bout

Magnetometer Planar gradiometer
bout
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An example of averaged MEG data
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-100...300 ms

SI

SII rightSII left

• Somatosensory median 
nerve data

• Activity expected at least 
in SI (left) and SII (left 
and right) 
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Possible strategy

17

• Fit SI at an early latency when it is active alone
• Fit the two SII responses using channel selections
• Fine tune SII fitting by keeping SI dipole fixed
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Dipole analysis: SEF with a motor task

Raij et al.
100 ms

50 nAm

SI

SII left

SII right

MI right

Source locationsSource waveforms
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Single-epoch analysis

SI

SIIc

SIIi

MI

Epoch 1 Epoch 2 Epoch 3 Epoch 4

Raij et al.

Tuesday, August 13, 2013



Matti Hämäläinen 8/2013

Dynamics of Brain Activation 
in Picture Naming

20

passive viewing
naming quietly
naming aloud

0    500 ms
10 nAm

speechpicture

sensory projection cortices

1

2

3

4

5
6

Salmelin et al., Nature 1994
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a

b

c
d

e

Imitation of orofacial gestures

Nishitani & Hari, Neuron 2002; Nishitani et al. Ann Neurol 2004
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Spatiotemporal analysis of the somatomotor 

(m) rhythms

22
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Salmelin et al., NeuroImage, 1995
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left tibial nerve

right tibial nerve

left median nerve 

right median nerve 

lip
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left toes

right toes

left finger

right finger

mouth

MOVEMENT

Homunculus of the 20-Hz 
component

Salmelin et al., NeuroImage, 1995
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Dipole models: caveats

• It is difficult to find the optimal dipole locations 
automatically:
– Heuristics: Build the model one dipole at a time
– Genetic algorithms: Find the global minimum
– Multistart simplex: Perform a lot of fits with different 

initial guesses
– MUSIC algorithms: Possible to scan one dipole at a time

• The least-squares solution might not be closest to 
the truth

• Sources might be too extended to be represented 
by a dipole

Tuesday, August 13, 2013
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Motivation to use distributed source models

• Account for non-focal (extended) sources
• Automatic analysis without heuristic choices often 

needed in multidipole models
• Incorporate anatomical and functional MRI 

constraints
• Lower SNR data can be processed
• If the estimate is linear the data any signal 

processing can be applied in the source space
• Surface or volume based group averaging can be 

employed

25
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Minimum-Norm Solutions

Examples:
– Minimum-norm estimates (MNE): p = 2
– LORETA: p = 2, R = Laplacian operator
– Minimum-current estimates (MCE): p = 1

q̂ = argminq

(

||y − Gq||2C + ||q||pR
)

• Grid of dipoles in a volume or on a surface
• Underdetermined: nsources ≫ nmeas

• Find an optimal solution among those fitting the 
data

26
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Retinotopic mapping with MNE
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Ahlfors et al. 1992
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Modern MNE

28

• Source locations (and orientations) constrained to 
the cortical mantle

• Forward solution with BEM
• Full noise-covariance matrix estimates computed 

from raw data
• Display on an inflated cortex to reveal the sulci
• Compute statistics
• Combined MEG and EEG solutions
• fMRI-guided solutions

Dale et al. 2000
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Cortical Source Location Constraints

29

Tessellation of the cortex: 
Source location and orientation 
information

For source estimation, the surface 
is typically decimated, resulting 
in 6000 - 10000 source locations
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Inflated Cortex

30
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Inflated Cortex
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Topologically correct tessellation 
can be inflated

Tuesday, August 13, 2013



Matti Hämäläinen 8/2013

Inflated Cortex
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Dale, Fischl, Sereno  et al.

Topologically correct tessellation 
can be inflated
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Inflation to a Sphere and Registration

31

Individual
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Inflation to a Sphere and Registration

31

Individual Aligned with average brain

Align sulcal patterns 

to the average brain

Tuesday, August 13, 2013



Matti Hämäläinen 8/2013

Inflation to a Sphere and Registration
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Individual Aligned with average brain

Align sulcal patterns 

to the average brain

MEG activity estimate
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Inflation to a Sphere and Registration

31

Individual Aligned with average brain

Align sulcal patterns 

to the average brain

Mapped to the average brain

Morph

MEG activity estimate
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Noise normalization

• Convert the current values into a test statistic
– dSPM (Dale et al.)
– sLORETA (Pascual-Marqui et al.)

• Divide the current with its standard deviation

• Analyze MEG/EEG data like fMRI or PET

32

Dale  et al. 2000
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MNE and dSPM

33

MNE dSPM

- Auditory MEG data
- Source locations constrained to the cortex
- No orientation constraint
- dSPM and sLORETA produce very similar results with real data
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Loose orientation constraint

34

MEG = 0

MEG  0
EEG  0

EEG  0

cortex

current sources
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Loose orientation constraint

34

• Penalize current components tangential to the 
cortex

• Takes the finite spacing between elementary 
sources into account

Lin  et al. 2006

MEG = 0

MEG  0
EEG  0

EEG  0

cortex

current sources
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Effect of the orientation constraint

35

• Auditory responses to short tones
• Depth-weighted MNE and dSPM
• Without and with loose orientation constraint
• The orientation constraint rules out infeasible sources

MNE dSPM
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Visual percepts of an ambiguous scene

36Parkkonen et al., PNAS, 2008
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Visual percepts of an ambiguous scene

36Parkkonen et al., PNAS, 2008
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Extract tag-related activity: MNE + GLM

37Parkkonen et al., PNAS, 2008
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Group analysis

38
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Spatial dispersion of  cortically-constrained 
MEG and EEG source estimates

MEG EEG MEG+EEG

0 cm 4 cm2 cm

Molins et al. 2008
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Comparison of MEG, EEG, and fMRI (dSPM)

40
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MEG/EEG response dynamics

41Sharon et al., SFN, 2005

BOLD
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fMRI-guided estimates

Dale  et al. 2000

• Prioritize locations of significant fMRI activity
(increase source variance)

• fMRI incorporated as a constraint, not an 
integrated analysis procedure

42
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What and Where pathways in the auditory 
cortex

fMRI weighted MEG 
estimates to sound pairs 
which were different in 
location, phonemic content, 
or neither

Ahveninen et al., PNAS, 2004 43
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MEG/EEG and fMRI: Similarities and 
differences

44

• An ill-posed inverse problem is not involved in fMRI 
analysis: better spatial resolution

• MEG/EEG have an exquisite temporal resolution
• Both fMRI and MEG/EEG are most likely related to 

LFPs measured at the microscopic level
• Synchronous activity has an overwhelming contribution 

to MEG/EEG
• fMRI is an indirect measure of brain activity:

– Transient changes may remain undetected
– Sustained weak activity may be more easily detectable

• fMRI does not suffer from cancellation related to 
different source orientations
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Why both MEG and EEG?

• Sources at the periphery of the sensor arrays can 
be estimated better when both modalities are 
available

• Different cancellation properties for multiple focal 
sources and extended source patches

• Missing signal in one modality is valuable 
information for the interpretation of the other

• Initial  combined MEG/EEG experiments can 
provide valuable guidelines for further single-
modality (MEG or EEG) large-cohort or clinical 
studies

45
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