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5.1 APPLICATION OF VIRUS-LIKE PARTICLES FOR VACCINATION

The mammalian immune system is highly attuned to recognizing and eliminating viral
particles following infection. The use of particle-based immunogens, often delivered
as live-attenuated viruses, has been an effective vaccination strategy for a variety
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of viruses [1]. A number of virus-like particles (VLPs) for vaccination have been
approved for clinical use. Clinical trials involving hepatitis E virus (HEV), influenza,
hepatitis C virus (HCV), poliovirus, human immunodeficiency virus (HIV), Ebola
virus, Norwalk virus, rotavirus, and severe acute respiratory syndrome (SARS) coron-
avirus are underway (Table 5.1). Some of those currently in preclinical testing are the
hepatitis B virus (HBV) and the human papillomavirus (HPV). The structural capsid
proteins of many viruses have the ability to self-assemble into VLPs. Such VLPs are
20–150 nm in diameter, and their exact size and morphology depend greatly on the
particular viral proteins. These VLPs resemble intact virions but are noninfectious
because they assemble without incorporating the viral genome (Fig. 5.1). Several
expression systems for the production of VLPs have been reported. These include
various mammalian cell lines (either transiently or stably transfected or transduced
with viral expression vectors), baculovirus expression systems, and various yeast and
Escherichia coli expression systems.

The HPV and HBV vaccines are the first VLP-derived vaccines approved by the
Food and Drug Administration (FDA). Expression of the small envelope protein of
HBV in yeast or mammalian cells leads to the formation of 22-nm-wide VLPs that
are essentially identical to that of a natural product of HBV infection provided as
the first-generation HBV vaccines. Similarly, expression of the L1 protein of HPV
leads to the assembly of VLPs that are somewhat similar to the empty virus particles
formed during HPV replication. These VLPs can induce strong immune responses
after administration due to high-density display of repetitive epitopes on the surface
of the capsid. This is further enhanced by the particulate nature of VLPs, especially in
the size range of around 40 nm, which appears to be optimal for uptake by dendritic
cells (DCs) [2].

5.2 INNATE AND ADAPTIVE CELLULAR IMMUNE RESPONSES
AGAINST VIRUS-LIKE PARTICLES

HPV–VLPs comprised of the viral capsid protein L1 are immunogenic in mice and
humans when injected intradermally or applied to mucosal surfaces in the absence of
adjuvant [3–6]. Recently, the molecular mechanism of the immune response against
HPV–VLP has been revealed (Fig. 5.2). Innate immune response of DC is triggered
by the Toll-like receptors (TLRs)–MyD88 signaling pathway and promotes adaptive
immune responses [7]. HPV–VLPs can rapidly induce specific immune responses via
TLR4-mediated signaling through MyD88 adaptor molecule [8]. MyD88 then activates
NF-κB and activating protein 1 transcription factors for proinflammatory responses [9].• Q3
Innate immune response also induces expression of DC maturation markers. DC mat-
uration is essential for stimulation of both innate and adaptive immune responses
[2, 10]. HPV–VLP is taken up by DCs for antigen processing and presentation by the
major histocompatibility complex (MHC) class I and II to activate CD8+ and naı̈ve
CD4+ T cells, respectively. Mature DCs induce the polarization of naı̈ve CD4+ T-
helper 1 (Th1) and 2 (Th2) cells through antigen presentation of MHC class II against
T-cell receptor of Th1/2 cells and co-stimulatory signals between CD80/86 and CD28
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TABLE 5.1. Capsids Used for Vaccines and Vaccine Platforms

Capsid

• Q1

• Q2

Capsid
Platforms Composition References

Hepatitis B virus Small envelope protein
(HBsAg): Licensed

(McAleer, W.J. et al. 1984, and Andre,
F.E. et al. 1987)

Small envelope protein
(HBsAg): Preclinical

(Kong, Q. et al. 2001)

PreS1+2 and HBsAg:
Licensed

(Yap, I. et al. 1992, Shouval, D. et al.
1994, Madalinski et al. 2001, and Yap,
I. and Chan, S.H. 1996)

HBsAg: Licensed (Krugman, S. et al. 1971)
GFP; malaria epitopes; HBV

preS1; immunodominant
epitopes of numerous viral
pathogens, including
bacterial and protozoan
epitopes on hepatitis B
virus core

(Pumpens, P. and Grens, E. 2001, Stahl,
S.J. et al. 1989, Kratz, P.A. et al. 1999,
Birkett, A.J. et al. 2002, Nardin, E.H.
et al. 2004, Chen, X. et al. 2004, and
Jegerlehner, A. et al. 2002)

Various model epitopes on
woodchuck hepatitis B
virus core

(Billaud, J.N. et al. 2005)

HCV HVR1; plant signal
petides; Dengue virus
envelope protein; HIV
gp41 2F5 epitope on
hepatits B virus S antigen

(Netter, H.J. et al. 2001, Sojikul, P. et al.
2003, Bisht, H.
et al. 2001, Bisht, H. et al. 2002,
Schlienger, K. et al. 1992, and Eckhart,
L. et al. 1996)

Hepatitis C virus Core, E1, E2: Preclinical (Baumert, T.F. et al. 1998, Jeong, S.H.
et al. 2004, Lechmann, M. et al. 2001,
and Murata, K. et al. 2003)

Hepatitis E virus Truncated major capsid
protein (ORF2)

(Li, T.C. et al. 1997, Li, T.C. et al. 2005,
Purcell, R.H. et al. 2003 and Emerson,
S.U. and Purcell, R.H. 2001)

HEV B cell epitope on
hepatitis E virus

(Niikura, M. et al. 2002)

Human papilloma
virus

L1, major capsid protein:
Licensed

(Zhou, J. et al. 1991, Kirnbauer, R. et al.
1992, Koutsky, L.A. et al. 2002, and
Villa, L.L. et al. 2005)

SHIV (HIV tat, rev; SIV
gag); HPV E6/E7 on
human papillomavirus

(Frazer, I.H. et al. 2004 and Dale, C.J.
et al. 2002)

CTL epitopes of HPV and
HIV on bovine
papillomavirus

(Liu, W.J. et al. 2000)

Human immunod-
eficiency
virus

Pr55gag, envelope:
Preclinical

(Sakuragi, S. et al. 2002, Gheysen, D.
et al. 1989, Shioda, T. and Shibuta, H.
1990, Deml, L. et al. 2005, and Doan,
L.X. et al. 2005)

(continued overleaf )
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TABLE 5.1. (Continued )

Capsid Capsid
Platforms Composition References

Various HIV env epitopes
on HIV; simian HIV
chimera

(Deml, L. et al. 2005 and Doan, L.X. et al.
2005)

Influenza HA, NA, matrix: Preclinical (Pushko, P. et al. 2005, Galarza, J.M. et al.
2005, and Latham, T. and Galarza, J.
2001)

Rotavirus VP2, VP6, VP7: Preclinical (Vieira, H.L. et al. 2005, Bertolotti-Ciarlet,
A. et al. 2003, and Crawford, S.E. et al.
1994)

Norwalk virus Capsid: Phase 1 (Ball, J.M. et al. 1999, Mason, H.S. et al
1996, and Tacket, C.O. et al. 2003)

Poliovius Capsid (VP0, 1, 3) (Brautigam, S. et al. 1993)
Ebola virus;

Marburg virus
Glycoprotein (GP) and

matrix (VP40): Preclinical
(Swenson, D.L. et al. 2005, Warfield, K.L.

et al. 2003, and Warfield, K.L. et al.
2005)

SARS (severe
acute respiratory
syndrome)
coronavirus

S, E, and M: Preclinical (Mortola, E. and Roy, P. 2004)

Polyomavirus VP1 and VP2 fused with
1–683 amino acid region
of the extracellular and
transmembrane domain of
HER-2/neu

(Tegerstedt, K. et al. 2005; 2007)

Yeast Ty HIV V3 loop; HIV p24;
malaria epitopes

(Griffiths, J.C. et al. 1991, Weber, J. et al.
1995, and Gilbert, S.C. et al. 1997)

Phage Qbeta Nicotine (Maurer, P. et al. 2005)

[11–13]. Th1 cells produce cytokines such as IFN-g and TNF-a that direct B cells• Q4• Q5
to secrete antigen-specific IgG2a, whereas Th2 cells express cytokines such as IL-4,
IL-5, IL-9, and IL-13 to promote IgG1 and IgE class switch. Secretion of various
cytokines by matue DCs further stimulates differentiation into B and T cells, resulting
in antibody release and cytotoxic T-cell responses, respectively.

5.3 TAILORING VIRUS-LIKE PARTICLES BY ALTERING THE CAPSID
SURFACE FOR VACCINE DEVELOPMENT

Through genetic fusion, VLPs can also be used to deliver immunogenic epitopes of
other pathogens [14, 15]. Introduction of the immunogenic amino acid sequence to the
surface region of the capsid allows the display of the immunogenic epitope with high
density on the capsid surface. This technological innovation has greatly broadened the
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Figure 5.1. Surface morphology of VLPs. Left, T = 1 VLP of HEV. Light, T = 7d VLP of human

• Q6

BK polyomavirus. (See insert for color representation of this figure.)
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Figure 5.2. Immunoreaction against VLP. Natural and adaptive responces are induced by the

association of VLP to TLR4 followed by the cell signalings of dendritic cells.
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scope of their use, from immunizing against microbial pathogens to immunotherapy
for chronic diseases [16]. For example, several VLPs have been developed as platforms
to expose immunogens for vaccine development based on HBV, human and bovine
papillomaviruses, yeast Ty, HIV/simian HIV gag, and HEV cores (Table 5.1). These
capsid platforms are capable of inducing an immunogenic response against surface-
exposed epitope. However, a major limitation to these VLP platforms is the small size
of foreign epitopes that can be accommodated within the specific surface region of the
capsid, which can preclude the presentation of large antigens such as HIV envelope or
influenza hemagglutinin proteins. In order to overcome such spatial limitations, it is
possible to immobilize peptide epitopes through the reactive site on the capsid platform
by using chemical crosslinking. This has been done by coupling cysteine-containing
peptides to the lysine residue situated in the immunodominant exposed region on HBV
core particles [17]. By utilizing chemical crosslinking, it is also possible to conjugate
nonprotein antigens such as nicotine on the surface of the capsid platform [18], which
can induce an immunoresponse to nicotine.

Another approach to utilize the inner void space of VLPs is to encapsulate
immunogens for the use of vaccination, expecting that the encapsulated immuno-
gens would be processed and presented by MHC class I and II after the uptake into
DCs. Murine polyomavirus (MPyV) VP1 is sufficient to form a spherical outer cap-• Q7
sid structure. MPyV VP2/3 localize inside the assembled capsid. A fusion protein
between MPyV VP2 and the 1-683 amino acid region of the extracellular and trans-
membrane domain of HER-2/neu (Her2) were encapsulated into MPyV VLP when it• Q8
co-expressed with MPyV VP1 [19]. Vaccination against these Her2 containing VLPs
inhibited Her2-expressing tumor growth in in vivo mouse models. The results show
the feasibility of using MPyV-VLPs carrying Her2 fusion proteins as safe and efficient
vaccines against Her2-expressing tumors.

5.4 USE OF FLUORESCENT-LABELED VIRUS-LIKE PARTICLES
TO ISOLATE ROTAVIRUS-SPECIFIC B-CELL CLONES FOR HUMAN
MONOCLONAL ANTIBODY PRODUCTION

Green fluorescent protein (GFP)–VLP of rotavirus (RV) has been used as antigen
probe to select RV-specific B-cell clones from peripheral CD19+ cells obtained from
RV-infected patients [20]. In this chapter, GFP fusions of the rotavirus VP2 protein
were co-expressed with VP6 and VP7. VP2 forms the innermost core layer of the cap-
sid and binds the ribonucleic acid (RNA) genome [21] VP6 and VP7 are major inner
capsid protein and glycoproteins of the outer surface of the capsid, respectively [22].
Using a fluorescence-activated cell sorter, B-cell clones that bind to both GFP–VLP
and anti-CD19-PE conjugate were detected and sorted into 96-well plates (one cell• Q9
per well) with feeder cells. Wells with VP6- or VP7-specific immunoglobulins were
identified with ELISA, and the genes encoding the antibody VH and VL regions from• Q10
those B-cell clones were subcloned into a Fab expression vector. This technology• Q11
allows for rapid enrichment of B-cell clones that produce RV-specific antibodies.
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5.5 VLP APPLICATION AS A DELIVERY CARRIER

There have been several attempts to use VLPs as a drug delivery system (DDS)
(Fig. 5.3). Development of therapeutic molecules includes small chemical compounds,
polymers such as DNA and RNA, and proteins. The carrier for DDS has to be func-
tionalized in the nanoscale space in which the carrier has to hold drugs tightly but
at the same time enable delivery and release of the drug at the designated target
cell types. In addition, the carrier should be biodegradable following drug target-
ing and delivery. This is important since nonbiodegradable carriers may have toxic
side effects. A variety of materials has been made from chemical-based materials to
construct nanocarriers including ceramics [23], polymers [24], dendrimers [25, 26],
micelles [26], nanospheres and nanocapsules [27], fullerenes and nanotubes [25], lipo-
somes [28], and metals [29, 30]. In these carriers, therapeutic drugs are incorporated
into the carriers by entrapment, adsorption, or encapsulation with both hydropho-
bic and hydrophilic surfaces. For active targeting to specific cell types, antibodies
or ligands directed against specific tumor epitopes or receptors can be conjugated
to the surface of the nanocarrier. To facilitate the release of drugs, the liposome
carriers may be comprised of pH-sensitive components that degrade in a low pH
environment, such as in areas of tumor hypoxia [31]. Alternatively, one may use
thermo-labile liposomes, which can release encapsulated agents in target tumor tis-
sue by local hyperthermia [32]. Liposomal doxorubicin (Doxil) and paclitaxel-loaded

Figure 5.3. Overview of application of VLPs for therapeutic purpose of human. VLPs would• Q12
be applicable to deliver the encapsulated agents to the target cells for cell therapy. (See insert

for color representation of this figure.)
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human serum albumin nanoaggregate (Abraxane) are the two nanotherapeutics that
have been approved by the FDA for cancer treatment.

Viruses have been used as carriers for human gene therapy because of their
intrinsic cell-specific targeting properties and high transduction activity. Currently,
such viruses include adenovirus, adeno-associated virus, herpes simplex virus, measles
virus, Sendai virus, retro- and lenti-viruses, poxvirus, alphavirus, rhabdovirus, simian
virus 40 (SV40), parvovirus, and Epstein–Barr virus (Table 5.2). However, there
is great concern regarding the use of live viruses for this application. For example,
recombinant viral genome may recover native viral activity and integrate into
the host genome to disrupt and alter its expression, resulting in cancer formation
and development of other diseases. To overcome this problem, methodologies
have been developed to use the viral capsid alone, rather than live viruses, as
protein-based nanocarriers. VLPs resemble intact virions, and hence they retain
active specific targeting activity. The intrinsic capacity of VLPs to encapsulate nucleic
acids, small molecules, and proteins make them ideal for gene and drug delivery
(Table 5.2). Osmotic shock [33] and in vitro self-assembly of capsid subunits into
VLPs [34–37] have been developed to encapsidate foreign deoxyribonucleic acid
(DNA) into polyomavirus VLPs (Fig. 5.4). In HBV VLPs, foreign DNA and flu-
orescent dye were incorporated by the electroporation system for gene and drug
delivery [38]. They showed that encapsidated DNA and fluorescence dye were selec-
tively delivered into hepatocytes, which suggests that recombinant HBV VLPs still
possess active targeting and high transduction activity similar to wild-type HBV virion.
As for drug delivery by papillomavirus and polyomavirus VLPs, carboxyfluorescein
diacetate and propidium iodide were incorporated into these VLPs [39–41]. They were
able to show that hormones, vitamins, and peptides can be delivered into cells, thus
suggesting that protein can potentially be delivered inside mammalian cells via these
viral capsid nanocarriers. Unlike DNA transduction with viral or nonviral nanocarriers,
protein delivery by VLPs avoids unexpected integration events into the genome but
still enable transient and dose-controlled delivery of proteins in vivo. For example,
it has been shown that pseudotyped lentivirions containing linamarase can deliver
the enzyme to target cancer cells. As a result, the cancer cells become sensitized to
linamarin, a cyanogenic flucoside substrate [42]. Similarly, in a polyomavirus system,
heterologous proteins were genetically fused to VP1 proteins or fragments of minor
coat proteins and successfully sequestered into VLPs [43–46]. Using this system, yeast
cytosine deaminase (yCD), a prodrug-modifying enzyme that converts 5-fluorocytosine
to 5-fluorouracil, was encapsulated into SV40 VLP. Tumor cells challenged by the
yCD-encapsulating VLP became sensitive to 5-fluorocytosine-induced cell death [47]
(Fig. 5.4b).

There have been several attempts to change or to broaden the cell-targeting activity
of the viral nanocarriers by incorporating or chemically ligating cell surface-targeting
peptide sequences to the viral capsid protein (Fig. 5.5). (Table 5.3). Integrin receptors
are heterodimers composed of α and β subunits that play essential roles in cell–cell
and cell–extracellular matrix interactions. Many investigators have reported the use
of short RGD peptide (arginine–glycine–asparate, an integrin-binding motif) to alter• Q15
the cell tropism of the virus capsids [48–52]. For example, the incorporation of the
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TABLE 5.2. Capsids Used as Carriers of Therapeutic Agents

Capsid

• Q13

Encapsidated
Platforms Agents References

Adenovirus DNA (Douglas, J.T. 2007, and Majhen, D. and
Ambriovic-Ristov, A. 2006)

Adeno-associated
virus

DNA (Daya, S. and Berns, K.I. 2008, and Grieger,
J.C. and Samulski, R.J. 2005)

Herpes simplex
virus

Foreign gene (Smith, K.D. et al. 2007, and Srinivasan, R.
et al. 2008)

Hepatitis B virus Foreign gene and
small molecule

(Yamada, T. et al. 2003)

Measles virus DNA (Blechacz, B. and Russell, S.J. 2008)
Sendai virus DNA (Yonemitsu, Y. et al. 2008)
Retro and lenti

viruses
DNA (Lim, K.I. and Schaffer, D.V. 2008, Loewen, N.

and Poeschla, E.M. 2005, and Sauter, S.L.
and Gasmi, M. 2001)

Protein (Link, N. et al. 2006)
Poxvirus DNA (Arlen, P.M. et al. 2007, and Moroziewicz, D.

and Kaufman, H.L. 2005)
Alphavirus DNA (Lundstrom, K. 2005, and Yamanaka, R. 2004)
Rhabdovirus DNA (Finke, S. and Conzelmann, K.K. 2005)
Human

papillomavirus
Small molecule (Drobni, P. et al. 2003, and Bergsdorf, C. et al.

2003)
Polyomavirus DNA (Barr, S.M. et al. 1979, Braun, H. et al. 1999,

Stokrova, J. et al. 1999, Henke,S. et al. 2000)
Protein (Schmidt, U. et al. 2001, Abbing, et al. 2004,

and Boura, E. et al. 2005)
Human JC

polyomavirus
Small molecule (Goldmann, C. et al. 2000)

Simian virus 40 DNA (Strayer, D.S. et al. 2002, and Vera, M. and
Fortes, P. 2004, Kimchi-Sarfaty, C. and
Gottesman, M.M. 2004, and Tsukamoto, H.
et al. 2007)

RNA (Kimchi-Sarfaty, C. et al. 2005)
Protein (Inoue, T. et al. 2008)

Parvovirus DNA (Maxwell, I.H. et al. 2002, and Srivastava, A.
2001)

Epstein–Barr
virus

DNA (Komaki, S. and Vos, J.M. 2000, and Sclimenti,
C.R. and Calos, M.P. 1998)

RGD motif into the maloney murine leukemia virus capsid results in the expansion
of its tropism from mouse NIH 3T3 cells to human melanoma cells [51]. As an alter-
native approach to changing cell tropism of viral capsids, folate was conjugated to
the antiadenovirus fiber monoclonal antibody [53]. Binding of this antibody on the
adenovirus capsid inhibited adenovirus infection through the adenovirus receptor, but
allowed folate receptor mediated entry. In order to immobilize the anti-CD4 mono-
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Figure 5.4. Examples of encapsulation inside the VLPs. (a) DNA-selective encapsulation into

the VLP. SV40 VP1–VLPs are dissociated with calcium chelating agent (EGTA) and reducing

agent (DTT), and then gel-filtrated to prepare pentamers, the building block of the VLP.

In the presence of DNA, pentamer reassembled into the VLP to selectively encapsulate the

DNA in physiological condition [20 mM Tris-HCl (pH7.0), 150 mM NaCl, and 2 mM CaCl2].

(b) to (e) Protein selective encapsulation into the VLP. (b) C-terminus of VP2/3 can interact

with pentamer from inside the capsid. (d) Using this fragment, cytosine deaminases were

selectively encapsulated into the VLPs by fusing the C-terminal VP2/3 fragment at the N-

terminus. (c) Cytosine deaminase converts the prodrug into the active form. (e) Using cytosine

deaminase encapsulated VLP, prodrug administration succeeded to kill the cells only when• Q14

the cells were incubated with cytosine deaminase encapsulated VLPs. (See insert for color

representation of this figure.)

clonal antibody on the capsid, the IgG-binding domain of protein A was inserted on
the Sindbis virus capsid [54]. Binding of anti-CD4 antibody through protein A binding
domain allowed viral entry into CD4-positive HeLa cells. It would also be possible
to target specific cell types such as liver cells by introducing the preS sequence of
HBV on the capsid using chemical crosslinking. Similarly, the many cancer targeting
ligands that have been identified by combinatorial chemistry [6, 55–57] can be chem-• Q16
ically synthesized, covalently linked to the viral capsid through site-specific ligation
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Native targeting motif
Ligand-conjugated
native targeting motif

Ligand-conjugated
anti capsid antibody

Anti cell surface
receptor antibody
conjucated to native
targeting motif

Anti cell surface
receptor antibody
immobilized through
lg-G-binding domain
of protein A motif

Modified targeting motif

Figure 5.5. Tropism alteration using peptide sequence, ligand, and antibody. Tropism can be

changed with peptide insertion at the surface residue of the capsid, ligand immobilization

on the capsid by chemical crosslinking or through anticapsid antibody, and anti-cell-surface

receptor antibody immobilization on the capsid by chemical crosslinking or through IgG-

binding domain of protein A motif inserted at the surface residue of the capsid.

• Q17
reactions, and the resulting targeting VLPs can be used as an efficient drug delivery
system for cancer therapy.

5.6 CONCLUSION

Viral capsid was originally applied to the vaccine development using its high immuno-
genicity. In recent years, viral capsids have been recognized as potential nanocarriers
for efficient delivery of biologically active materials to specific cell types. For this
latter application, the VLPs can be genetically and chemically modified so that their
targeting property can be optimized and their immunogenicity minimized.
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TABLE 5.3. Foreign Epitope Insertion to Change Capsid Tropism• Q19

Capsid Platforms Foreign Epitopes References

Adenovirus (GS)5-ACDCRGDCFCG and
(GS)5-KKKKKKK

(Wickham, T. et al. 1997, and Vigne
et al. 1999)

Adeno-associated
virus

RGD motif (Shi, X. et al. 2006)

Polyomavirus protein Z (Gleiter, S. and Lilie, H. 2001)
dihydrofolate reductase (Gleiter, S. et al. 1999)
eight glutamic acid residues

and one cysteine
(Stubenrauch, K. et al. 2000, and May,

T. et al. 2002)
WW domain Yes-kinase

associated protein
(Schmidt, U. et al. 2001)

urokinase activator domain (Shin, Y.C. and Folk, W.R. 2003)
Simian Virus 40 RGD motif (Takahashi, R.U. et al. 2008)
Sindbis virus IgG-binding domain of protein

A
(Ohno, K. et al. 1997)

Retro and Lenti
viruses

RGD motif, gastrin-releasing
protein

(Gollan, T. and Green, M.R. 2002;
2002)
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Queries in Chapter 5

Q1. We have shortened the running head, since it exceeds the textwidth. Please
confirm

Q2. None of references list in References; Change to number cites and add to list
with complete information

Q3. define

Q4. define

Q5. define

Q6. We have shortened the running head, since it exceeds the textwidth. Please
confirm

Q7. define?

Q8. define

Q9. define

Q10. define

Q11. define

Q12. “human” what?

Q13. Add all reference cites to References with complete information; use numbers
for cites

Q14. Verify positions of labels in legend

Q15. define

Q16. ok?

Q17. check sense

Q18. Add all ref cites to References; use numbers as cites

Q19. Add all ref cites to References; use numbers as cites

Q20. Provide all author names


